Quest	ion	Scheme	Marks	AOs	
6		$\left\{ (2+kx)^{-4} = 2^{-4} \left(1 + \frac{kx}{2} \right)^{-4} = \frac{1}{16} \left(1 + (-4) \left(\frac{kx}{2} \right) + \frac{(-4)(-5)}{2!} \left(\frac{kx}{2} \right)^2 + \dots \right) \right\}$			
(a)		For the x^2 term: $\left(\frac{1}{16}\right) \frac{(-4)(-5)}{2!} \left(\frac{k}{2}\right)^2 = \left\{ = \frac{5}{32}k^2 \right\}$	M1	1.1b	
		16) 2! (2) (32^k)	A1	1.1b	
		$\frac{1}{16} \frac{(-4)(-5)}{2!} \left(\frac{k}{2}\right)^2 = \frac{125}{32} \implies \frac{5}{32} k^2 = \frac{125}{32} \implies k^2 = 25 \implies k = \dots \implies A = \dots$	dM1	3.1a	
		$\left\{ A = -\frac{4}{32}k \implies \right\} A = -\frac{4}{32}(5)$	M1	2.2a	
		$A = -\frac{5}{8}$ or -0.625	A1	1.1b	
			(5)		
(b)		$ f(x) $ is valid when $\left \frac{kx}{2}\right < 1 \implies \left \frac{5x}{2}\right < 1 \implies x < \frac{2}{5}$			
		E.g. • As $x = \frac{1}{10}$ lies in the interval $ x < \frac{2}{5}$, the binomial expansion is valid • As $\left \left(\frac{5}{2} \right) \left(\frac{1}{10} \right) \right = \frac{1}{4} < 1$, the binomial expansion is valid	B1ft	2.3	
			(1)		
0	Question / Notes		(6 1	narks)	
Question 6 Notes:					
M1:	For either $\frac{(-4)(-5)}{2!}$ or $\left(\frac{k}{2}\right)^2$ or $\left(\frac{kx}{2}\right)^2$ or $\frac{(-4)(-5)}{2}$ or 10 as part of their x^2 coefficient				
A1:	For $\left(\frac{1}{16}\right) \frac{(-4)(-5)}{2!} \left(\frac{k}{2}\right)^2$ or $\frac{5}{32}k^2$ or equivalent as part of their x^2 coefficient				
dM1:	dependent on the previous M mark				
	A complete strategy to find a value for k and use their k to find a value for k				
M1:	Deduces and applies $A = -\frac{4}{32}$ (their k) or $A = -\frac{1}{8}$ (their k)				
A1:	$A = -\frac{5}{8}$ or -0.625				
(b) B1ft:	See scheme				
	Not	Note: Allow follow through for applying either $ x < \frac{2}{\text{their } k}$ or $\left(\frac{\text{their } k}{2}\right)\left(\frac{1}{10}\right)$			