Question	Scheme	Marks	AOs
3 (a)	$\left\{ y = x^2 + kx + 14 - 8(x-5)^{-1} \Longrightarrow \right\} \frac{dy}{dx} = 2x + k + 8(x-5)^{-2}$	M1	1.1b
		A1	1.1b
	$\left\{ \operatorname{At} x = 3, \frac{\mathrm{d}y}{\mathrm{d}x} = 0 \implies \right\} \frac{\mathrm{d}y}{\mathrm{d}x} = 2(3) + k + \frac{8}{(3-5)^2} = 0$	dM1	1.1b
	$\Rightarrow 6 + k + \frac{8}{4} = 0 \Rightarrow 6 + k + 2 = 0 \Rightarrow k = -8 *$	A1*	2.1
		(4)	
(b)	$\frac{d^2 y}{dx^2} = 2 - 16(x - 5)^{-2} = 2 - \frac{16}{(x - 5)^3}$		
	When $x = 3$, $\frac{d^2 y}{dx^2} = 2 - \frac{16}{(3-5)^3}$	M1	1.1b
	$\frac{d^2 y}{dx^2} = 4 > 0 \implies \{\text{local}\} \text{ minimum } \{\text{stationary point at } P\}$	A1	2.1
		(2)	
(b) Alt 1	E.g. $x = 2.9$, $\frac{dy}{dx} = 2(2.9) - 8 + 8(2.9 - 5)^{-2} = -0.38594 < 0$	M1	1.1b
	$x = 3.1, \ \frac{dy}{dx} = 2(3.1) - 8 + 8(3.1 - 5)^{-2} = 0.41606 > 0$ $\Rightarrow \{\text{local}\} \text{ minimum } \{\text{stationary point at } P\}$	A1	2.1
		(2)	
(c)	Criteria 1 (Accept any one of the two following points)		
	• At $x = 7$, $\frac{d^2 y}{dx^2} = 2 - \frac{16}{(7-5)^3} = 0$		
	• $\frac{d^2 y}{dx^2} = 2 - \frac{16}{(x-5)^3} = 0 \implies (x-5)^3 = 8 \implies x = 2+5 \implies x = 7$		
	<u>Criteria 2</u> (Accept any one of the two following points)		
	• At $x = 6.9$, $\frac{d^2 y}{dx^2} = -0.33 < 0$ and at $x = 7.1$, $\frac{d^2 y}{dx^2} = 0.27 > 0$		
	• $\frac{d^3 y}{dx^3} = \frac{48}{(x-5)^3}$ and at $x = 7$, $\frac{d^3 y}{dx^3} \left\{ = \frac{48}{(7-5)^3} = 6 \right\} \neq 0$		
	At least one of Criteria 1 or Criteria 2	M1	2.1
	Both Criteria 1 and Criteria 2 (with correct calculations) and concludes the curve has a {non-stationary} point of inflection at $x = 7$	A1	2.4
		(2)	
(d)	 Sign change method is not valid because either the curve is not defined at x = 5 	B1	2.4
	 the curve is not continuous over the interval (4.5, 5.5) 		<u></u> _
		(1)	
	(9 marks)		

Question 3 Notes:		
(a)		
M1:	At least one of either $x^2 \to \pm Ax$ or $kx \to k$ or $-\frac{8}{(x-5)} \to \pm B(x-5)^{-2}$; $A, B \neq 0$	
A1:	$\frac{dy}{dx} = 2x + k + 8(x-5)^{-2}$, which may be un-simplified or simplified	
dM1	dependent on the previous M mark	
	Complete strategy of substituting $x = 3$ into their equation for $\frac{dy}{dx}$ and setting $\frac{dy}{dx}$ equal to 0	
A1*:	Correctly shows $k = -8$ with no errors in their working	
(b)		
M1:	Evidence of substituting $x = 3$ into an expression for $\frac{d^2 y}{dx^2}$ which is in the form $\pm \alpha \pm \beta (x-5)^{-3}$;	
	$\alpha, \beta \neq 0$	
A1:	For a correct calculation, a valid reason and a correct conclusion	
(b)		
Alt 1		
M1:	Uses $\frac{dy}{dx}$ which is in the form $\pm \alpha x - 8 \pm \beta (x-5)^{-2}$; $\alpha, \beta \neq 0$ and finds values for $\frac{dy}{dx}$ either side	
	of $x = 3$	
A1:	For correct calculations, a valid reason and a correct conclusion	
(c)		
M1:	See scheme	
A1:	See scheme	
(d)		
B1:	States that the sign change method is not valid together with an acceptable reason as indicated in the scheme	