## 9. Given that $\theta$ is measured in radians, prove, from first principles, that

$$\frac{\mathrm{d}}{\mathrm{d}\theta}(\cos\theta) = -\sin\theta$$

(5)

## You may assume the formula for $\cos(A \pm B)$ and that as $h \to 0$ , $\frac{\sin h}{h} \to 1$ and $\frac{\cos h - 1}{h} \to 0$