Question	Scheme	Marks	AOs
6 (a)	$f(x) = (8 - x)\ln x, \ x > 0$		
	Crosses x-axis $\Rightarrow f(x) = 0 \Rightarrow (8 - x) \ln x = 0$		
	x coordinates are 1 and 8	B1	1.1b
		(1)	
(b)	Complete strategy of setting $f'(x) = 0$ and rearranges to make $x =$	M1	3.1a
	$\begin{cases} u = (8 - x) v = \ln x \\ \frac{\mathrm{d}u}{\mathrm{d}x} = -1 \qquad \frac{\mathrm{d}v}{\mathrm{d}x} = \frac{1}{x} \end{cases}$		
	$f'(x) = -\ln x + \frac{8-x}{x}$	M1	1.1b
	$x = \frac{x}{x}$	A1	1.1b
	$-\ln x + \frac{8-x}{x} = 0 \implies -\ln x + \frac{8}{x} - 1 = 0$ $\implies \frac{8}{x} = 1 + \ln x \implies x = \frac{8}{1 + \ln x} $ *	A1*	2.1
		(4)	
(c)	Evaluates both $f'(3.5)$ and $f'(3.6)$	M1	1.1b
	f'(3.5) = 0.032951317 and $f'(3.6) = -0.058711623Sign change and as f'(x) is continuous, the x coordinate of Q lies between x = 3.5 and x = 3.6$	Al	2.4
		(2)	
(d)(i)	${x_5 =} 3.5340$	B1	1.1b
(d)(ii)	${x_Q} = 3.54 \ (2 \text{ dp})$	B1	2.2a
		(2)	
	(9 marks)		

Question 6 Notes:		
(a)		
B1:	Either	
	• 1 and 8	
	• on Figure 2, marks 1 next to A and 8 next to B	
(b)		
M1:	Recognises that Q is a stationary point (and not a root) and applies a complete strategy of setting $f'(x) = 0$ and rearranges to make $x =$	
M1:	Applies $vu' + uv'$, where $u = 8 - x$, $v = \ln x$	
	Note: This mark can be recovered for work in part (c)	
A1:	$(8-x)\ln x \rightarrow -\ln x + \frac{8-x}{x}$, or equivalent	
	Note: This mark can be recovered for work in part (c)	
A1*:	Correct proof with no errors seen in working.	
(c)		
M1:	Evaluates both $f'(3.5)$ and $f'(3.6)$	
A1:	$f'(3.5) = awrt \ 0.03 \text{ and } f'(3.6) = awrt - 0.06 \text{ or } f'(3.6) = -0.05 \text{ (truncated)}$	
	and a correct conclusion	
(d)(i)		
B1:	See scheme	
(d)(ii)		
B1:	Deduces (e.g. by the use of further iterations) that the x coordinate of Q is 3.54 accurate to 2 dp	
	Note: $3.5 \rightarrow 3.55119 \rightarrow 3.52845 \rightarrow 3.53848 \rightarrow 3.53404 \rightarrow 3.53600 \rightarrow 3.53514 (\rightarrow 3.535518)$	