Ques	tion Scheme	Marks	AOs	
8 (:	Gradient $AB = -\frac{2}{5}$	B1	2.1	
	y coordinate of A is 2	B1	2.1	
	Uses perpendicular gradients $y = +\frac{5}{2}x + c$	M1	2.2a	
	$\Rightarrow 2y - 5x = 4 *$	A1*	1.1b	
		(4)		
(b	Uses Pythagoras' theorem to find <i>AB</i> or <i>AD</i> Either $\sqrt{5^2 + 2^2}$ or $\sqrt{\left(\frac{4}{5}\right)^2 + 2^2}$	M1	3.1a	
	Uses area $ABCD = AD \times AB = \sqrt{29} \times \sqrt{\frac{116}{25}}$	M1	1.1b	
	area $ABCD = 11.6$	A1	1.1b	
		(3)		
(7 marks)				
Notes:				
(a) It is important that the student communicates each of these steps clearly				
B1: States the gradient of <i>AB</i> is $-\frac{2}{5}$				
B1:	31: States that <i>y</i> coordinate of $A = 2$			
M1:	Uses the form $y = mx + c$ with $m =$ their adapted $-\frac{2}{5}$ and $c =$ their 2			
	Alternatively uses the form $y - y_1 = m(x - x_1)$ with $m =$ their adapted $-\frac{2}{5}$ and			
	$(x_1, y_1) = (0, 2)$			
A1*:	Proceeds to given answer			
(b) M1:	Finds the lengths of <i>AB</i> or <i>AD</i> using Pythagoras' Theorem. Look for $\sqrt{5^2 + 2^2}$ or $\sqrt{\left(\frac{4}{5}\right)^2 + 2^2}$			
	Alternatively finds the lengths <i>BD</i> and <i>AO</i> using coordinates. Look for $\left(5 + \frac{4}{5}\right)$ and 2			
M1:	For a full method of finding the area of the rectangle <i>ABCD</i> . Allow for $AD \times AB$			
	Alternatively attempts area $ABCD = 2 \times \frac{1}{2}BD \times AO = 2 \times \frac{1}{2}'5.8' \times '2'$			
A1:	Area <i>ABCD</i> = 11.6 or other exact equivalent such as $\frac{58}{5}$			