Question	Scheme	Marks	AOs
9(a)	$t = 0, \ \theta = 80 \Longrightarrow A = 59$	B1	2.2a
	$t = 40, \ \theta = 33 \Longrightarrow 33 = 21 + 59e^{-40k} \Longrightarrow e^{-40k} = \frac{12}{59}$ $\Longrightarrow -40k = \ln\left(\frac{12}{59}\right) \Longrightarrow k = \dots$	M1	3.1b
	$\Rightarrow k = -\frac{1}{40} \ln\left(\frac{12}{59}\right) \ (= 0.0398)$	A1	1.1b
	$\theta = 21 + 59e^{-0.0398t}$	A1	3.3
		(4)	
(b)	$t = 20 \Rightarrow \theta = 21 + 59e^{-20 \times 0.0398} =(47.6)$	M1	3.4
	This suggests that the model is appropriate because $47.6 \approx 48$	A1ft	3.5a
		(2)	
(b) Alt	$\theta = 48 \Rightarrow 48 = 21 + 59e^{-20 \times 0.0398} \Rightarrow e^{-0.0398t} = \frac{27}{69} \Rightarrow t =(19.6)$	M1	3.4
	This suggests that the model is appropriate because $19.6 \approx 20$	Alft	3.5a
		(2)	
(c)	$\theta = 21 + 59e^{-0.0398t} \Rightarrow \frac{\mathrm{d}\theta}{\mathrm{d}t} = -0.0398 \times 59e^{-0.0398t} = \dots$	B1ft	2.2a
	$\Rightarrow \frac{\mathrm{d}\theta}{\mathrm{d}t} = -0.0398 \times 59\mathrm{e}^{-0.0398 \times 20} = \dots$	M1	1.1b
	Decreasing at a rate of 1.06 °C per minute	A1	3.2a
		(3)	
(9 marks)			
Notes			

(a)

B1: Uses t = 0, $\theta = 80$ to deduce the correct value for A

M1: Uses the given equation for the model and t = 40, $\theta = 33$ and correct log work to establish a value for k

A1: Correct value for k (exact or awrt 0.0398)

A1: Correct equation (allow exact *k* or awrt 0.0398)

(b)

M1: Uses the model with their values to find the temperature after 20 minutes

A1ft: Compares their value with 48 and makes a correct interpretation

Alt:

M1: Uses the model with their values to find *t* when $\theta = 48$

A1ft: Compares their value with 20 and makes a correct interpretation

(c)

B1ft: Deduces the correct derivative. Follow through their values.

M1: Substitutes t = 20 into an expression of the form βe^{-kt} to establish the required rate.

A1: Correct rate including units