Question	Scheme	Marks	AOs	
14(a)	Attempts to use both $ \sin(x-60^\circ) = \pm \sin x \cos 60^\circ \pm \cos x \sin 60^\circ $ $\cos(x-30^\circ) = \pm \cos x \cos 30^\circ \pm \sin x \sin 30^\circ $	M1	2.1	
	Correct equation $2 \sin x \cos 60^{\circ} - 2 \cos x \sin 60^{\circ} = \cos x \cos 30^{\circ} + \sin x \sin 30^{\circ}$	A1	1.1b	
	Either uses $\frac{\sin x}{\cos x} = \tan x$ and attempts to make $\tan x$ the subject E.g. $(2\cos 60^{\circ} - \sin 30^{\circ})\tan x = \cos 30^{\circ} + 2\sin 60^{\circ}$ Or attempts $\sin 30^{\circ}$ etc with at least two correct and collects terms in $\sin x$ and $\cos x$ E.g. $\left(2 \times \frac{1}{2} - \frac{1}{2}\right)\sin x = \left(2 \times \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2}\right)\cos x$	M1	2.1	
	Proceeds to given answer showing all key steps E.g. $\frac{1}{2} \tan x = \frac{3\sqrt{3}}{2} \Rightarrow \tan x = 3\sqrt{3}$	A1*	1.1b	
		(4)		
(b)	Deduces that $x = 2\theta + 60^{\circ}$	B1	2.2a	
	$\tan(2\theta + 60^{\circ}) = 3\sqrt{3} \Rightarrow 2\theta + 60^{\circ} = 79.1^{\circ}, 259.1^{\circ}, \dots$	M1	1.1b	
	Correct method to find one value of θ E.g $\theta = \frac{79.1^{\circ} - 60^{\circ}}{2}$	dM1	1.1b	
	θ = awrt 9.6°, 99.6° (See note)	A1	2.1	
		(4)		
	(8 marks)			

Notes:

(a)

M1: Attempts to use both compound angle expansions to set up an equation in $\sin x$ and $\cos x$. The terms must be correct but condone sign errors and a slip on the multiplication of 2.

A1: Correct equation $2\sin x \cos 60^\circ - 2\cos x \sin 60^\circ = \cos x \cos 30^\circ + \sin x \sin 30^\circ$ o.e.

Note that $\cos 60^{\circ} = \sin 30^{\circ}$ and $\cos 30^{\circ} = \sin 60^{\circ}$

Also allow this mark for candidates who substitute in their trigonometric values "early"

$$2\sin x \times \frac{1}{2} - 2\cos x \times \frac{\sqrt{3}}{2} = \cos x \times \frac{\sqrt{3}}{2} + \sin x \times \frac{1}{2} \quad \text{o.e.}$$

M1: Shows the necessary progress towards showing the given result.

There are three key moves, two of which must be shown for this mark.

- uses $\frac{\sin x}{\cos x} = \tan x$ to form an equation in just $\tan x$.
- uses exact numerical values for $\sin 30^\circ$, $\sin 60^\circ$, $\cos 30^\circ$, $\cos 60^\circ$ with at least two correct
- collects terms in $\sin x$ and $\cos x$ or alternatively in $\tan x$

A1*: Proceeds to the given answer with accurate work showing all necessary lines.

Examples of two proofs showing all necessary lines

E.g. I $2\sin x \cos 60^{\circ} - 2\cos x \sin 60^{\circ} = \cos x \cos 30^{\circ} + \sin x \sin 30^{\circ}$

 $\sin x (2\cos 60^{\circ} - \sin 30^{\circ}) = \cos x (\cos 30^{\circ} + 2\sin 60^{\circ})$

 $(2\cos 60^{\circ} - \sin 30^{\circ})\tan x = \cos 30^{\circ} + 2\sin 60^{\circ}$

2. $\frac{\sin x}{\cos x} = \tan x$ so M1

1. collect terms

$$\tan x = \frac{\cos 30^{\circ} + 2\sin 60^{\circ}}{2\cos 60^{\circ} - \sin 30^{\circ}} = \frac{\frac{\sqrt{3}}{2} + \sqrt{3}}{1 - \frac{1}{2}} = 3\sqrt{3}$$

3..uses values and completes proof A1*

E.g II

$$2\sin x \times \frac{1}{2} - 2\cos x \times \frac{\sqrt{3}}{2} = \cos x \times \frac{\sqrt{3}}{2} + \sin x \times \frac{1}{2}$$
$$\Rightarrow \frac{1}{2}\sin x = \frac{3\sqrt{3}}{2}\cos x$$
$$\Rightarrow \tan x = 3\sqrt{3}$$

1.uses values

2.collects terms so M1

3. $\frac{\sin x}{\cos x} = \tan x$ completes proof A1*

(b) Hence

B1: Deduces that $x = 2\theta + 60^{\circ}$ o.e such as $\theta = \frac{x - 60^{\circ}}{2}$

This is implied for sight of the equation $\tan(2\theta + 60^\circ) = 3\sqrt{3}$

M1: Proceeds from $\tan(2\theta \pm \alpha^{\circ}) = 3\sqrt{3} \Rightarrow 2\theta \pm \alpha^{\circ} = \text{one of } 79.1^{\circ}, 259.1^{\circ}, \dots$ where $\alpha \neq 0$

One angle for $\arctan(3\sqrt{3})$ must be correct in degrees or radians(3sf). FYI radian answers 1.38, 4.52

dM1: Correct method to find one value of θ from their $2\theta \pm \alpha^{\circ} = 79.1^{\circ}$ to $\theta = \frac{79.1^{\circ} \mp \alpha^{\circ}}{2}$

This is dependent upon one angle being correct, which must be in degrees, for $\arctan(3\sqrt{3})$

 $\tan(2\theta + 60^{\circ}) = 3\sqrt{3} \Rightarrow \theta = 9.6^{\circ}$ would imply B1 M1 dM1

A1: $\theta = \text{awrt } 9.6^{\circ}, 99.6^{\circ}$ with no other values given in the range Otherwise: Via the use of $\cos(2\theta + 30^{\circ}) = \cos 2\theta \cos 30^{\circ} - \sin 2\theta \sin 30^{\circ}$.

 $2\sin 2\theta = \cos(2\theta + 30^\circ) \Rightarrow \tan 2\theta = \frac{\sqrt{3}}{5} \Rightarrow \theta = 9.6^\circ, 99.6^\circ$

The order of the marks needs to match up to the main scheme so 0110 is possible.

B1: For achieving $\tan 2\theta = \frac{\sqrt{3}}{5}$ o.e so allow $\tan 2\theta = \operatorname{awrt} 0.346$ or $\tan 2\theta = \frac{\cos 30^{\circ}}{2 + \sin 30^{\circ}}$

Or via double angle identities $\sqrt{3} \tan^2 \theta + 10 \tan \theta - \sqrt{3} = 0$ o.e.

M1: Attempts to use the compound angle identities to reach a form $\tan 2\theta = k$ where k is a constant not $3\sqrt{3}$ (or expression in trig terms such as $\cos 30$ etc as seen above)

Or via double angle identities reaches a 3TQ in $\tan \theta$

dM1: Correct order of operations from $\tan 2\theta = k$ leading to $\theta = ...$

Correctly solves their $\sqrt{3} \tan^2 \theta + 10 \tan \theta - \sqrt{3} = 0$ leading to $\theta = \dots$

A1: $\theta = \text{awrt } 9.6^{\circ}, 99.6^{\circ}$ with no other values given in the range.

Note that $\tan(2\theta + 60^\circ) = 3\sqrt{3} \Rightarrow \theta = 9.6^\circ, 99.6^\circ$ is acceptable for full marks