Question	Scheme	Marks	AOs
12	$\int x^3 \ln x dx = \frac{x^4}{4} \ln x - \int \frac{x^4}{4} \times \frac{1}{x} dx$	M1	1.1b
	$= \frac{x^4}{4} \ln x - \frac{x^4}{16} (+c)$	M1 A1	1.1b 1.1b
	$\int_{1}^{e^{2}} x^{3} \ln x dx = \left[\frac{x^{4}}{4} \ln x - \frac{x^{4}}{16} \right]_{1}^{e^{2}} = \left(\frac{e^{8}}{4} \ln e^{2} - \frac{e^{8}}{16} \right) - \left(-\frac{1^{4}}{16} \right)$	M1	2.1
	$=\frac{7}{16}e^{8}+\frac{1}{16}$	A1	1.1b
		(5)	
			(5 marks)

Notes:

M1: Integrates by parts the right way round.

Look for $kx^4 \ln x - \int kx^4 \times \frac{1}{x} dx$ o.e. with k > 0. Condone a missing dx

M1: Uses a correct method to integrate an expression of the form $\int kx^4 \times \frac{1}{x} dx \rightarrow c x^4$

A1: $\int x^3 \ln x \, dx = \frac{x^4}{4} \ln x - \frac{x^4}{16}$ (+ c) which may be left unsimplified

M1: Attempts to substitute 1 and e^2 into an expression of the form $\pm px^4 \ln x \pm qx^4$, subtracts and uses $\ln e^2 = 2$ (which may be implied).

A1: $\frac{7}{16}e^8 + \frac{1}{16}$ o.e. Allow 0.4375 $e^8 + 0.0625$ or uncancelled fractions. NOT ISW: $7e^8 + 1$ is A0

.....

You may see attempts where substitution has been attempted.

E.g.
$$u = \ln x \Rightarrow x = e^u$$
 and $\frac{dx}{du} = e^u$

M1: Attempts to integrate the correct way around condoning slips on the coefficients

$$\int x^{3} \ln x \, dx = \int e^{4u} u \, du = \frac{e^{4u}}{4} u - \int \frac{e^{4u}}{4} \, du$$

M1 A1:
$$\int x^3 \ln x \, dx = \frac{e^{4u}}{4} u - \frac{e^{4u}}{16} (+c)$$

M1 A1: Substitutes 0 and 2 into an expression of the form $\pm pue^{4u} \pm qe^{4u}$ and subtracts

It is possible to use integration by parts "the other way around"

To do this, candidates need to know or use $\int \ln x \, dx = x \ln x - x$

FYI
$$I = \int x^3 \ln x \, dx = x^3 (x \ln x - x) - \int (x \ln x - x) \times 3x^2 \, dx = x^3 (x \ln x - x) - 3I + \frac{3}{4}x^4$$

Hence
$$4I = x^4 \ln x - \frac{1}{4}x^4 \Rightarrow I = \frac{1}{4}x^4 \ln x - \frac{1}{16}x^4$$

Score M1 for a full attempt at line 1 (condoning bracketing and coefficient slips) followed by M 1 for line 2 where terms in *I* o.e. to form the answer.