Question	Scheme	Marks	AOs
3 (a)	(i) $x^2 + y^2 - 10x + 16y = 80 \Rightarrow (x-5)^2 + (y+8)^2 =$	M1	1.1b
	Centre $(5, -8)$	A1	1.1b
	(ii) Radius 13	A1	1.1b
		(3)	
(b)	Attempts $\sqrt{"5"^2 + "8"^2} + "13"$	M1	3.1a
	$13 + \sqrt{89}$ but ft on their centre and radius	A1ft	1.1b
		(2)	
			(5 marks)
Notes:			

(a)(i)

M1: Attempts to complete the square on **both** *x* and *y* terms.

Accept
$$(x \pm 5)^2 + (y \pm 8)^2 = \dots$$
 or imply this mark for a centre of $(\pm 5, \pm 8)$

Condone
$$(x \pm 5)^2 \dots (y \pm 8)^2 = \dots$$
 where the first ... could be, or even –

A1: Correct centre (5, -8).

Accept without brackets. May be written x = 5, y = -8 (a)(ii)

A1: 13. The M mark must have been awarded, so it can be scored following a centre of $(\pm 5, \pm 8)$. Do not allow for $\sqrt{169}$ or ± 13

M1: Attempts $\sqrt{5^{*}+8^{*}} + 13^{*}$ for their centre (5,-8) and their radius 13.

Award when this is given as a decimal, e.g. 22.4 for correct centre and radius. Look for $\sqrt{a^2 + b^2} + r$ where centre is $(\pm a, \pm b)$ and radius is r

A1ft: $13 + \sqrt{89}$ Follow through on their (5, -8) and their 13 leading to an exact answer. ISW for example if they write $13 + \sqrt{89} = 22.4$

There are more complicated attempts which could involve finding *P* by solving $y = "-\frac{8}{5}x"$ and

 $x^2 + y^2 - 10x + 16y = 80$ simultaneously and choosing the coordinate with the greatest modulus. The method is only scored when the distance of the largest coordinate from *O* is attempted. Such methods are unlikely to result in an exact value but can score 1 mark for the method. Condone slips

FYI. Solving
$$y = -\frac{8}{5}x$$
 and $x^2 + y^2 - 10x + 16y = 80 \Rightarrow 89x^2 - 890x - 2000 = 0 \Rightarrow P = (11.89, -19.02)$
Hence $OP = \sqrt{"11.89"^2 + "19.02"^2} (= 22.43)$ scores M1 A0 but $OP = \sqrt{258 + 26\sqrt{89}}$ is M1 A1