| Question | Scheme | Marks | AOs | |--|--|-------|--------| | 14(i) | Let the consecutive odd integers be $2n - 1$ and $2n + 1$
$(2n-1)^2 + (2n+1)^2 = 4n^2 - 4n + 1 + 4n^2 + 4n + 1 =$ | M1 | 2.1 | | | $=8n^2+2$ | A1 | 1.1b | | | $= 8n^{2} + 2$ So $(2n-1)^{2} + (2n+1)^{2}$ is always 2 more than a multiple of 8 | A1 | 2.4 | | | | (3) | | | (ii) | Assume that $\log_2 5$ is rational so that $\log_2 5 = \frac{a}{b}$ | M1 | 2.4 | | | where a and b are integers | | | | | $\log_2 5 = \frac{a}{b} \Rightarrow 5 = 2^{\frac{a}{b}}$ $5 = 2^{\frac{a}{b}} \Rightarrow 5^b = 2^a$ | M1 | 1.1b | | | $5 = 2^{\frac{a}{b}} \Longrightarrow 5^b = 2^a$ | A1 | 2.2a | | | This is a contradiction as a power of 2 cannot equal a power of 5 so $\log_2 5$ must be irrational | A1 | 2.4 | | | | (4) | | | | | | marks) | | Notes | | | | | (i) M1: Starts the proof by stating 2 consecutive odd numbers, squares and adds and collects terms A1: Correct expression A1: Completes the proof with no errors and an appropriate conclusion (ii) M1: Begins the proof by negating the statement e.g. log₂ 5 is rational M1: Applies the definition of logs to eliminate the log A1: Deduces that 5^b = 2^a A1: A full and complete argument that completes the contradiction proof | | | |