| Question  | Scheme                                                                                                                                                                                                                     | Marks    | AOs          |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------|
| 13        | $y^2 - x^2 = 8 \Rightarrow 2y \frac{\mathrm{d}y}{\mathrm{d}x} - 2x = 0$                                                                                                                                                    | M1       | 2.1          |
|           | $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x}{y} \Rightarrow \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{y - x \frac{\mathrm{d}y}{\mathrm{d}x}}{y^2}$                                                                       | M1<br>A1 | 3.1a<br>1.1b |
|           | $\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{y - x \frac{\mathrm{d}y}{\mathrm{d}x}}{y^2} \Longrightarrow y^3 \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = y^2 - xy \frac{\mathrm{d}y}{\mathrm{d}x} = y^2 - x^2$                 | M1       | 3.1a         |
|           | $\Rightarrow y^3 \frac{d^2 y}{dx^2} = y^2 - x^2 = 8 \Rightarrow \frac{d^2 y}{dx^2} = \frac{8}{y^3} *$                                                                                                                      | A1*      | 2.1          |
|           |                                                                                                                                                                                                                            | (5)      |              |
|           | Alternative 1:                                                                                                                                                                                                             |          |              |
|           | $y^2 - x^2 = 8 \Rightarrow 2y \frac{\mathrm{d}y}{\mathrm{d}x} - 2x = 0$                                                                                                                                                    | M1       | 2.1          |
|           | $2y\frac{dy}{dx} - 2x = 0 \Longrightarrow \left(\frac{dy}{dx}\right)^2 + y\frac{d^2y}{dx^2} - 1 = 0$                                                                                                                       | M1<br>A1 | 3.1a<br>1.1b |
|           | $\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 + y\frac{\mathrm{d}^2y}{\mathrm{d}x^2} - 1 = 0 \Rightarrow y^3 \frac{\mathrm{d}^2y}{\mathrm{d}x^2} = y^2 - y^2 \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 = y^2 - x^2$ | M1       | 3.1a         |
|           | $\Rightarrow y^3 \frac{d^2 y}{dx^2} = y^2 - x^2 = 8 \Rightarrow \frac{d^2 y}{dx^2} = \frac{8}{y^3} *$                                                                                                                      | A1*      | 2.1          |
|           |                                                                                                                                                                                                                            | (5)      |              |
|           | Alternative 2:                                                                                                                                                                                                             |          |              |
|           | $y^{2} - x^{2} = 8 \Rightarrow 2y \frac{dy}{dx} - 2x = 0$ or $y = \sqrt{x^{2} + 8} \Rightarrow \frac{dy}{dx} = x(x^{2} + 8)^{-\frac{1}{2}}$                                                                                | M1       | 2.1          |
|           | 1                                                                                                                                                                                                                          | M1       | 3.1a         |
|           | $\frac{dy}{dx} = \frac{x}{y} = \frac{x}{\sqrt{x^2 + 8}} \Rightarrow \frac{d^2y}{dx^2} = \frac{\sqrt{x^2 + 8} - x^2 (x^2 + 8)^{-\frac{1}{2}}}{x^2 + 8}$                                                                     | A1       | 1.1b         |
|           | $\frac{d^2 y}{dx^2} = \frac{x^2 + 8 - x^2}{\left(x^2 + 8\right)^{\frac{3}{2}}}$                                                                                                                                            | M1       | 3.1a         |
|           | $\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{8}{y^3} *$                                                                                                                                                                   | A1*      | 2.1          |
|           |                                                                                                                                                                                                                            | (5)      |              |
| (5 marks) |                                                                                                                                                                                                                            |          |              |

## M1: Adopts a correct strategy of implicit differentiation to obtain $\alpha y \frac{dy}{dx} - \beta x = 0$

M1: Rearranges and then applies the quotient rule to obtain 
$$\frac{d^2y}{dx^2} = \frac{\alpha y - \beta x \frac{dy}{dx}}{y^2}$$
A1: Fully correct differentiation involving the second derivative

**Notes** 

M1: A complete strategy using the given equation and the first derivative to express the second

derivative as an expression not involving the first derivative A1\*: Correct proof with no errors

M1: Adopts a correct strategy of implicit differentiation to obtain  $\alpha y \frac{dy}{dx} - \beta x = 0$ 

A1: Fully correct differentiation involving the second derivative M1: A complete strategy using the given equation and the first derivative to express the second derivative as an expression not involving the first derivative

explicitly in terms of x and applies the chain rule

M1: Multiplies numerator and denominator by  $(x^2 + 8)^{\frac{1}{2}}$ 

A1\*: Correct proof with no errors

M1: Differentiates implicitly again using the product rule to obtain  $\alpha \left(\frac{dy}{dx}\right)^2 + \beta y \frac{d^2 y}{dx^2} + k = 0$ 

M1: Adopts a correct strategy of implicit differentiation to obtain  $\alpha y \frac{dy}{dx} - \beta x = 0$  or expresses y