Question	Scheme	Marks	AOs
2(a)	$f(2) = 3(2)^3 - 7(2)^2 + 7(2) - 10 =$	M1	1.1b
	$f(2) = 38 - 38 = 0 \Rightarrow (x - 2)$ is a factor of $f(x)$ *	A1*	2.1
		(2)	
(b)	a = 3 or c = 5	B1	2.2a
	$f(x) = (x-2)(x^2 +x +)$	M1	1.1b
	a = 3, b = -1, c = 5	A1	1.1b
		(3)	
(c)	$3x^2 - x + 5 = 0 \Rightarrow b^2 - 4ac = (-1)^2 - 4(3)(5) = \dots$		
	or e.g.		
	$3x^2 - x + 5 = 0 \Rightarrow 3\left(x^2 - \frac{1}{3}x + \frac{5}{3}\right) = 0 \Rightarrow \left(x - \frac{1}{6}\right)^2 - \frac{1}{36} + \frac{5}{3} \Rightarrow \left(x - \frac{1}{6}\right)^2 = \dots$	M1	3.1a
	or e.g.		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 6x - 1 = 0 \Rightarrow x =, \Rightarrow y =$		
	$(-1)^2 - 4(3)(5) = -59 \Rightarrow b^2 - 4ac < 0$		
	or e.g.		
	$\left(x-\frac{1}{6}\right)^2 = -\frac{59}{36}$ and square numbers cannot be negative	A1	2.4
	or e.g.		
	$\frac{dy}{dx} = 0 \Rightarrow y = \frac{59}{12}$ so the minimum is above the x-axis		
	So the quadratic has no real roots and so $f(x) = 0$ has only 1 real root		
		(2)	
Notes (7 marks)			
(a)			
M1: Attempts f(2)			
A1*: Clearly shows $f(2) = 0$ and makes a suitable conclusion			
(b) B1: Deduces the correct value of <i>a</i> or <i>c</i>			
M1: Complete method to obtain values for a, b and c. May use inspection or expand to give			
$ax^3 + (b-2a)x^2 + (c-2b)x - 2c$ and compare coefficients.			
A1: All correct stated or embedded			
(c) M1: Starts the process of showing that their 3-term quadratic has no real roots. E.g. considers			
discriminant or attempts to solve by completing the square or differentiates to find turning point			
A1: Fully correct work with appropriate conclusion for their chosen method			