Question	Scheme	Marks	AOs	
12(a)	$H = ax^2 + bx + c$ and $x = 0$, $H = 3 \Rightarrow H = ax^2 + bx + 3$	M1	3.3	
	$H = ax^2 + bx + 3$ and $x = 120, H = 27 \implies 27 = 14400a + 120b + 3$	M1	3.1b	
	or $\frac{dH}{dx} = 2ax + b = 0$ when $x = 90 \implies 180a + b = 0$	A1	1.1b	
	$H = ax^2 + bx + 3$ and $x = 120, H = 27 \implies 27 = 14400a + 120b + 3$			
	and	11 (1	2.11	
	$\frac{dH}{dx} = 2ax + b = 0$ when $x = 90 \implies 180a + b = 0$	aMI	3.10	
	$\Rightarrow a =, b =$			
	$H = -\frac{1}{300}x^2 + \frac{3}{5}x + 3 \text{o.e.}$	A1	1.1b	
		(5)		
(b)(i)	$x = 90 \Rightarrow H\left(=-\frac{1}{300}(90)^2 + \frac{3}{5}(90) + 3\right) = 30 \mathrm{m}$	B1	3.4	
(b)(ii)	$H = 0 \Longrightarrow -\frac{1}{300}x^2 + \frac{3}{5}x + 3 = 0 \Longrightarrow x = \dots$	M1	3.4	
	x = (-4.868,) 184.868	Δ1	3 29	
	$\Rightarrow x = 185 (\mathrm{m})$		J.24	
		(3)		
(c)	Examples must focus on why the model may not be appropriate or			
	give values/situations where the model would break down: E.g.			
	 The ground is unikery to be nonzontal The ball is not a particle so has dimensions/size 	B1	3.5h	
	 The ball is unlikely to travel in a vertical plane (as it will 	DI	5.50	
	spin)			
	• <i>H</i> is not likely to be a quadratic function in <i>x</i>			
		(1)		
	(9 marks)			
Notes				

- (a)
- M1: Translates the problem into a suitable model and uses H = 3 when x = 0 to establish c = 3Condone with $a = \pm 1$ so $H = x^2 + bx + 3$ will score M1 but little else
- M1: For a correct attempt at **using one of the two other pieces** of information within a quadratic model **Either** uses H = 27 when x = 120 (with c = 3) to produce a linear equation connecting *a* and *b* for the model **Or** differentiates and uses $\frac{dH}{dx} = 0$ when x = 90. Alternatives exist here, using the

symmetrical nature of the curve, so they could use $x = -\frac{b}{2a}$ at vertex or use point (60, 27) or (180,3).

A1: At least one correct equation connecting *a* and *b*. Remember "*a*" could have been set as negative so an equation such as 27 = -14400a + 120b + 3 would be correct in these circumstances.

dM1: Fully correct strategy that uses $H = a x^2 + b x + 3$ with the two other pieces of information in order to establish the values of **both** *a* **and** *b* for the model

A1: Correct equation, not just the correct values of a, b and c. Award if seen in part (b)

(b)(i)

B1: Correct height including the units. CAO

(b)(ii)

M1: Uses H = 0 and attempts to solve for *x*. Usual rules for quadratics.

A1: Discards the negative solution (may not be seen) and identifies awrt 185 m. Condone lack of units (c)

B1: Candidate should either refer to an issue with one of the four aspects of how the situation has been modelled or give a situation where the model breaks down

- the ball has been modelled as a particle
- there may be trees (or other hazards) in the way that would affect the motion

Condone answers (where the link to the model is not completely made) such as

- the ball will spin
- ground is not flat

Do not accept answers which refer to the situation after it hits the ground (this isn't what was modelled)

- the ball will bounce after hitting the ground
- it gives a negative height for some values for *x*

Do not accept answers that do not refer to the model in question, or else give single word vague answers

- the height of tee may have been measured incorrectly
- "friction", "spin", "force" etc
- it does not take into account the weight of the ball
- it depends on how good the golfer is
- the shape of the ball will affect the motion
- you cannot hit a ball the same distance each time you hit it

The method using an alternative form of the equation can be scored in a very similar way. The first M is for the completed square form of the quadratic showing a maximum at x = 90So award M1 for $H = \pm a(x-90)^2 + c$ or $H = \pm a(90-x)^2 + c$. Condone for this mark an equation with $a = 1 \implies H = (x-90)^2 + c$ or $c = 3 \implies H = a(x-90)^2 + 3$ but will score little else

Alt (a)	$H = a(x+b)^2 + c$ and $x = 90$ at $H_{\text{max}} \Rightarrow H = a(x-90)^2 + c$	M1	3.3
	$H = 3$ when $x = 0 \Rightarrow 3 = 8100a + c$ or $H = 27$ when $x = 120 \Rightarrow 27 = 900a + c$	M1 A1	3.1b 1.1b
	$H = 3 \text{ when } x = 0 \implies 3 = 8100a + c$ and $H = 27 \text{ when } x = 120 \implies 27 = 900a + c$ $\implies a =, c =$	dM1	3.1b
	$H = -\frac{1}{300} (x - 90)^2 + 30 \text{ o.e}$	A1	1.1b
	2	(5)	
(b)	$x = 90 \Longrightarrow H = 0^2 + 30 = 30 \mathrm{m}$	B1	3.4
		(1)	
	$H = 0 \Longrightarrow 0 = -\frac{1}{300} (x - 90)^2 + 30 \Longrightarrow x = \dots$	M1	3.4

$$\Rightarrow x = 185 \text{(m)} \qquad A1 \qquad 3.2a$$
(2)

.

Note that
$$H = -\frac{1}{300}(x-90)^2 + 30$$
 is equivalent to $H = -\frac{1}{300}(90-x)^2 + 30$

Other versions using symmetry are also correct so please look carefully at all responses

E.g. Using a starting equation of
$$H = a(x-60)(x-120)+b$$
 leads to $H = -\frac{1}{300}(x-60)(x-120)+27$