Question	Scheme	Marks	AOs
11(a)	h = 0.5	B1	1.1b
	$A \approx \frac{1}{2} \times \frac{1}{2} \left\{ 0.4805 + 1.9218 + 2 \left(0.8396 + 1.2069 + 1.5694 \right) \right\}$	M1	1.1b
	= 2.41	A1	1.1b
		(3)	
(b)	$\int (\ln x)^2 dx = x (\ln x)^2 - \int x \times \frac{2 \ln x}{x} dx$	M1	3.1a
	•	A1	1.1b
	$= x(\ln x)^{2} - 2 \int \ln x dx = x(\ln x)^{2} - 2(x \ln x - \int dx)$	dM1	2.1
	$= x(\ln x)^{2} - 2 \int \ln x dx = x(\ln x)^{2} - 2x \ln x + 2x$	GIVII	2.1
	$\int_{2}^{4} (\ln x)^{2} dx = \left[x (\ln x)^{2} - 2x \ln x + 2x \right]_{2}^{4}$		
	$=4(\ln 4)^2-2\times 4\ln 4+2\times 4-\left(2(\ln 2)^2-2\times 2\ln 2+2\times 2\right)$	ddM1	2.1
	$=4(2\ln 2)^2-16\ln 2+8-2(\ln 2)^2+4\ln 2-4$		
	$=14(\ln 2)^2 -12\ln 2 +4$	A1	1.1b
		(5)	

(a)

B1: Correct strip width. May be implied by $\frac{1}{2} \times \frac{1}{2} \{....\}$ or $\frac{1}{4} \times \{....\}$

M1: Correct application of the trapezium rule.

Look for $\frac{1}{2}$ × "h" $\{0.4805 + 1.9218 + 2(0.8396 + 1.2069 + 1.5694)\}$ condoning slips in the digits.

Notes

(8 marks)

The bracketing must be correct but it is implied by awrt 2.41

A1: 2.41 only. This is not awrt

(b)

M1: Attempts parts the correct way round to achieve $\alpha x (\ln x)^2 - \beta \int \ln x \, dx$ o.e.

May be unsimplified (see scheme). Watch for candidates who know or learn $\int \ln x \, dx = x \ln x - x$ who may write $\int (\ln x)^2 \, dx = \int (\ln x) (\ln x) \, dx = \ln x (x \ln x - x) - \int \frac{x \ln x - x}{x} \, dx$

A1: Correct expression which may be unsimplified

dM1: Attempts parts again to (only condone coefficient errors) to achieve $\alpha x (\ln x)^2 - \beta x \ln x \pm \gamma x$ o.e.

ddM1: Applies the limits 4 and 2 to an expression of the form $\pm \alpha x (\ln x)^2 \pm \beta x \ln x \pm \gamma x$, subtracts and applies $\ln 4 = 2\ln 2$ at least once. Both M's must have been awarded A1: Correct answer

711. Correct answe

M1 A1, dM1: $\int u^2 e^u du = u^2 e^u - \int 2u e^u du = u^2 e^u - 2u e^u \pm 2e^u$

It is possible to do $\int (\ln x)^2 dx$ via a substitution $u = \ln x$ but it is very similar.

ddM1: Applies appropriate limits and uses $\ln 4 = 2 \ln 2$ at least once to an expression of the form $u^2 e^u - \beta u e^u \pm \gamma e^u$ Both M's must have been awarded