Question	Scheme	Marks	AOs
3(a)	$u_2 = k - 12, \ u_3 = k - \frac{24}{k - 12}$	M1	1.1b
	$u_1 + 2u_2 + u_3 = 0 \Longrightarrow 2 + 2(k - 12) + k - \frac{24}{k - 12} = 0$	dM1	1.1b
	$\Rightarrow 3k - 22 - \frac{24}{k - 12} = 0 \Rightarrow (3k - 22)(k - 12) - 24 = 0$ $\Rightarrow 3k^2 - 36k - 22k + 264 - 24 = 0$ $\Rightarrow 3k^2 - 58k + 240 = 0*$	A1*	2.1
		(3)	
(b)	$k = 6, \left(\frac{40}{3}\right)$	M1	1.1b
	k = 6 as k must be an integer	A1	2.3
		(2)	
(c)	$(u_3 =)10$	B1	2.2a
		(1)	
·		(6	marks)
	Notes		

(a)

M1: Attempts to apply the sequence formula once for either u_2 or u_3 .

Usually for
$$u_2 = k - \frac{24}{2}$$
 o.e. but could be awarded for $u_3 = k - \frac{24}{their "u_2"}$

dM1: Award for

- attempting to apply the sequence formula to find both u_2 and u_3
- using $2+2"u_2"+"u_3"=0 \Rightarrow$ an equation in k. The u_3 may have been incorrectly adapted
- A1*: Fully correct work leading to the printed answer. There must be
 - (at least) one correct intermediate line between $2+2(k-12)+k-\frac{24}{k-12}=0$ (o.e.) and the

given answer that shows how the fractions are "removed". E.g. (3k-22)(k-12)-24=0

• no errors in the algebra. The = 0 may just appear at the answer line.

(b)

M1: Attempts to solve the quadratic which is implied by sight of k = 6.

This may be awarded for any of

- $3k^2 58k + 240 = (ak \pm c)(bk \pm d) = 0$ where ab = 3, cd = 240 followed by k = 3
- an attempt at the correct quadratic formula (or completing the square)
- a calculator solution giving at least k = 6
- A1: Chooses k = 6 and gives a minimal reason

Examples of a minimal reason are

- 6 because it is an integer
- 6 because it is a whole number

• 6 because
$$\frac{40}{3}$$
 or 13.3 is not an integer

B1: Deduces the correct value of u_3 .
--