Question	Scheme	Marks	AOs		
1	$f(1) = a(1)^{3} + 10(1)^{2} - 3a(1) - 4 = 0$	M1	3.1a		
	$6-2a=0 \Rightarrow a=$	M1	1.1b		
	<i>a</i> = 3	A1	1.1b		
		(3)			
(3 marks)					
Notes					

Main method seen:

M1: Attempts f (1) = 0 to set up an equation in a It is implied by a+10-3a-4=0

Condone a slip but attempting f(-1) = 0 is M0

M1: Solves a linear equation in a.

Using the main method it is dependent upon having set $f(\pm 1) = 0$

It is implied by a solution of $\pm a \pm 10 \pm 3a \pm 4 = 0$.

Don't be concerned about the mechanics of the solution.

A1: a = 3 (following correct work)

Answers without working scores 0 marks. The method must be made clear. Candidates cannot guess. However if a candidate states for example, when a = 3, $f(x) = 3x^3 + 10x^2 - 9x - 4$ and shows that (x-1) is a factor of this f(x) by an allowable method, they should be awarded M1 M1 A1 E.g. 1: $3x^3 + 10x^2 - 9x - 4 = (x-1)(3x^2 + 13x + 4)$ Hence a = 3E.g. 2: $f(x) = 3x^3 + 10x^2 - 9x - 4$, f(1) = 3 + 10 - 9 - 4 = 0 Hence a = 3

The solutions via this method must end with the value for a to score the A1

Other methods are available. They are more difficult to determine what the candidate is doing.

Please send to review if you are uncertain

It is important that a correct method is attempted so look at how the two M's are scored

Amongst others are:

	ax^2	(10+a)x	4
x	ax^3	$(10+a)x^2$	4 <i>x</i>
-1	$-ax^2$	-(10+a)x	-4

Alt (1) by inspection which may be seen in a table/g

$$ax^{3} + 10x^{2} - 3ax - 4 = (x - 1)(ax^{2} + (10 + a)x + 4)$$
 and sets terms in x equal
 $-3a = -(10 + a) + 4 \Rightarrow 2a = 6 \Rightarrow a = 3$

M1: This method is implied by a **correct** equation, usually -3a = -(10 + a) + 4

M1: Attempts to find the quadratic factor which must be of the form $ax^2 + g(a)x \pm 4$ and then forms and solves a linear equation formed by linking the coefficients or terms in x

Alt (2) By division:
$$x-1$$
) $ax^{2} + (\pm 10 \pm a)x + (10 - 2a)$
 $ax^{3} + 10x^{2} - 3ax - 4$
 $ax^{3} - ax^{2}$
 $(10+a)x^{2} - 3ax$
 $(10+a)x^{2} - (10+a)x$
 $(-2a+10)x$

- M1: This method is implied by a **correct** equation, usually -10+2a = -4
- M1: Attempts to divide with quotient of $ax^2 + (\pm 10 \pm a)x + h(a)$ and then forms and solves a linear equation in *a* formed by setting the remainder = 0.