Question	Scheme	Marks	AOs
5(a)	Uses $\left \overrightarrow{AB} \right = 5\sqrt{2} \Longrightarrow 5^2 + (p-3)^2 = (5\sqrt{2})^2$	M1	1.1b
	Solves to find at least one value for $p \Rightarrow (p-3)^2 = 25 \Rightarrow p =$	M1	1.1b
	<i>p</i> = -2, 8	A1	2.1
		(3)	
(b)	$\overrightarrow{AC} = (q+2)\mathbf{i} + 4\mathbf{j}$	M1	1.1b
	Uses $\tan\left(\frac{\pi}{3}\right) = \frac{4}{q+2}$ with $\tan\left(\frac{\pi}{3}\right) = \sqrt{3}$ to find q	dM1	2.1
	$q = \frac{4}{\sqrt{3}} - 2$ or $\frac{4\sqrt{3}}{3} - 2$ or other exact form	A1	1.1b
		(3)	
(6 marks)			
Notes: (a) M1: Uses Pythagoras' theorem in an attempt to form an equation in <i>p</i> . There must be an attempt to subtract the coordinates to find \overrightarrow{AB} M1: Uses a correct method to find at least one value of <i>p</i> from their quadratic equation A1: Uses all steps correctly to find $p = -2, 8$ (b) M1: Attempts to finds \overrightarrow{AC} by subtracting components dM1: Uses correct trigonometry to set up an equation in <i>q</i> . To score this mark $\tan\left(\frac{\pi}{3}\right) = \sqrt{3}$ or			

equivalent must be used

A1:
$$q = \frac{4}{\sqrt{3}} - 2$$
 or $\frac{4\sqrt{3}}{3} - 2$ or other exact form