Question	Scheme	Marks	AOs
4 (a)	Sets up identity $4x^3 - 19x^2 + 28x - 4 = (Ax + B)(x - 2)^2 + C$ And finds values of A, B or C	M1	2.1
	For two of $A = 4, B = -3, C = 8$	A1	1.1b
	For all three of $A = 4, B = -3, C = 8$	A1	1.1b
		(3)	
(b)	$\int h(x) dx = \int 4x - 3 + \frac{8}{(x-2)^2} dx$		
	$=2x^2 - 3x - \frac{8}{x-2} + c$	M1 M1 A1ft	1.1b 1.1b 1.1b
		(3)	
			(6 marks)

Notes:

(a)

M1: For showing clear calculations and algebraic reasoning leading to values of A, B or C.

E.g. If an identity is used then it must be correct. Sets $4x^3 - 19x^2 + 28x - 4 = (Ax + B)(x - 2)^2 + C$ and finds values of *A*, *B* and *C* are found by substituting or equating terms

E.g. If division is used then $(x-2)^2 \rightarrow x^2 \pm 4x \pm 4$ and the division must lead to a linear quotient of

4x + B with a remainder that is independent of x. $x^2 - 4x + 4 \overline{\smash{\big)}} 4x^3 - 19x^2 + 28x - 4$

(Note: This method would not be expected but is an acceptable way to score the marks)

A1: For two of A = 4, B = -3, C = 8

A1: For all three of A = 4, B = -3, C = 8

(b)

M1: For a correct attempt at integrating either the Ax + B term or the $\frac{C}{(x-2)^2}$ term

M1: For a correct attempt at integrating both the Ax + B term and the $\frac{C}{(x-2)^2}$ term

A1ft: $2x^2 - 3x - \frac{8}{x-2} + c$ but follow through on their non-zero values of A, B and C.