Question 3 (Total 5 marks)

Part | Working or answer an examiner might expect to | Mark | Notes

	see			
(a)	$\frac{dy}{dx} = \frac{(x+6)^2 \times (18x+54) - (9x^2+54x) \times 2(x+6)}{(x+6)^4}$		M1	This mark is given for an attempt to differentiate the expression for <i>y</i>
			A1	This mark is given for correctly differentiating the expression for <i>y</i>
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{(18x+54)(x+6)-18x^2-108x}{(x+6)^3}$	M1	This mark is given for cancelling the expression through by $(x + 6)$	
	$\frac{dy}{dx} = \frac{54x + 324}{(x+6)^3} = \frac{54(x+6)}{(x+6)^2}$ $\frac{dy}{dx} = \frac{54}{(x+6)^2}$	A1	This mark is given for a fully correct expression for $\frac{dy}{dx}$	
(b)	Given $x \ne -6$, $(x+6)^2$ will always be positive, and 54 divided by a positive will give a positive answer. Therefore $\frac{dy}{dx} > 0$	B1	This mark is given for a clear explanation.	