Question	Scheme	Marks	AOs
9 (a)	States $\log a - \log b = \log \frac{a}{b}$	B1	1.2
	Proceeds from $\frac{a}{b} = a - b \rightarrow \dots \rightarrow ab - a = b^2$	M1	1.1b
	$ab-a=b^2 \rightarrow a(b-1)=b^2 \Rightarrow a=\frac{b^2}{b-1} *$	A1*	2.1
		(3)	
(b)	States either $b > 1$ or $b \ne 1$ with reason $\frac{b^2}{b-1}$ is not defined at $b=1$ oe	B1	2.2a
	States $b > 1$ and explains that as $a > 0 \Rightarrow \frac{b^2}{b-1} > 0 \Rightarrow b > 1$	B1	2.4
		(2)	
(5 marks)			

(a)

B1: States or uses $\log a - \log b = \log \frac{a}{b}$. This may be awarded anywhere in the question and may be implied by a starting line of $\frac{a}{b} = a - b$ oe. Alternatively takes $\log b$ to the rhs and uses the addition law

 $\log(a-b) + \log b = \log(a-b)b$. Watch out for $\log a - \log b = \frac{\log a}{\log b} = \log\left(\frac{a}{b}\right)$ which could score 010

M1: Attempts to make 'a' the subject. Awarded for proceeding from $\frac{a}{b} = a - b$ to a point where the two terms in a are on the same side of the equation and the term in b is on the other.

A1*: CSO. Shows clear reasoning and correct mathematics leading to $a = \frac{b^2}{b-1}$. Bracketing must be correct.

Allow a candidate to proceed from $ab - a = b^2$ to $a = \frac{b^2}{b-1}$ without the intermediate line.

(b)

B1: For deducing $b \neq 1$ as $a \rightarrow \infty$ oe such as "you cannot divide by 0" or correctly deducing that b > 1. They may state that *b* cannot be less than 1.

B1: For b > 1 and explaining that as $a > 0 \Rightarrow \frac{b^2}{b-1} > 0 \Rightarrow b > 1$ (as b^2 is positive) As a minimum accept that b > 1 as a cannot be negative.

Note that a > b > 1 is a correct statement but not sufficient on its own without an explanation.

Alt (a)

Note that it is possible to attempt part (a) by substituting $a = \frac{b^2}{b-1}$ into both sides of the given identity.

$$\log a - \log b = \log(a - b) \Longrightarrow \log\left(\frac{b^2}{b - 1}\right) - \log b = \log\left(\frac{b^2}{b - 1} - b\right)$$

B1: Score for $\log\left(\frac{b^2}{b - 1}\right) - \log b = \log\left(\frac{b}{b - 1}\right)$

M1: Attempts to write
$$\frac{b^2}{b-1} - b$$
 as a single fraction $\frac{b^2}{b-1} - b = \frac{b^2 - b(b-1)}{b-1}$

Allow as two separate fractions with the same common denominator

A1*: Achieves lhs and rhs as
$$\log\left(\frac{b}{b-1}\right)$$
 and makes a comment such as "hence true"