



riguit i

Figure 1 shows part of the curve with equation  $y = e^{\frac{1}{5}x^2}$  for  $x \ge 0$ 

The finite region R, shown shaded in Figure 1, is bounded by the curve, the y-axis, the x-axis, and the line with equation x = 2

The table below shows corresponding values of x and y for  $y = e^{\frac{1}{5}x^2}$ 

| х | 0 | 0.5               | 1                | 1.5               | 2                |
|---|---|-------------------|------------------|-------------------|------------------|
| y | 1 | e <sup>0 05</sup> | e <sup>0 2</sup> | e <sup>0 45</sup> | e <sup>0 8</sup> |

- (a) Use the trapezium rule, with all the values of y in the table, to find an estimate for the area of R, giving your answer to 2 decimal places.
- (b) Use your answer to part (a) to deduce an estimate for

(i) 
$$\int_0^2 \left(4 + e^{\frac{1}{5}x^2}\right) dx$$

(ii) 
$$\int_{1}^{3} e^{\frac{1}{5}(x-1)^2} dx$$

giving your answers to 2 decimal places.

(2)

(3)