Question	Scheme	Marks	AOs	
15	$\overrightarrow{OA} = \begin{pmatrix} -3\\2\\7 \end{pmatrix}, \ \overrightarrow{OB} = \begin{pmatrix} 3\\-1\\p \end{pmatrix}, \ \overrightarrow{BC} = \begin{pmatrix} 0\\6\\-7 \end{pmatrix}, \ \overrightarrow{AD} = \begin{pmatrix} 2\\5\\-4 \end{pmatrix}; \ p \text{ is a constant}$			
(a)	$\left\{ \overrightarrow{OD} = \overrightarrow{OA} + \overrightarrow{AD} = \begin{pmatrix} -3\\2\\7 \end{pmatrix} + \begin{pmatrix} 2\\5\\-4 \end{pmatrix} \Rightarrow \right\} \overrightarrow{OD} = \begin{pmatrix} -1\\7\\3 \end{pmatrix}$	B1	1.1b	
		(1)		
(b)	$\overrightarrow{OC} = \overrightarrow{OB} + \overrightarrow{BC} = \begin{pmatrix} 3\\-1\\p \end{pmatrix} + \begin{pmatrix} 0\\6\\-7 \end{pmatrix} = \begin{pmatrix} 3\\5\\p-7 \end{pmatrix}$	M1	3.1a	
	$\overrightarrow{DC} = \overrightarrow{OC} - \overrightarrow{OD} = \begin{pmatrix} 3\\5\\p-7 \end{pmatrix} - \begin{pmatrix} -1\\7\\3 \end{pmatrix} = \begin{pmatrix} 4\\-2\\p-10 \end{pmatrix}$	A1	1.1b	
	$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = \begin{pmatrix} 3\\-1\\p \end{pmatrix} - \begin{pmatrix} -3\\2\\7 \end{pmatrix} = \begin{pmatrix} 6\\-3\\p-7 \end{pmatrix}$	M1	3.1a	
	so $AB = 1.5 DC \implies p - 7 = 1.5(p - 10)$			
	$p-7 = 1.5p - 15 \implies 8 = 0.5p \implies p = 16$	A1	1.1b	
		(4)		
(5 marks)				

Question 15 Notes:

(a)		
B1:	$\left\{\overrightarrow{OD}\right\} = \begin{pmatrix} -1 \\ 7 \\ 3 \end{pmatrix}$	

(b)

Complete strategy for finding the vector \overrightarrow{DC} or \overrightarrow{CD} (e.g. finding \overrightarrow{OC} followed by \overrightarrow{DC}) M1:

A1: For either
$$\{\overrightarrow{DC}\} = \begin{pmatrix} 4 \\ -2 \\ p-10 \end{pmatrix}$$
 or $\{\overrightarrow{CD}\} = \begin{pmatrix} -4 \\ 2 \\ -p+10 \end{pmatrix}$

1

Complete strategy of **M1**:

• finding the vector \overrightarrow{AB} (or \overrightarrow{BA})

- discovering that \overrightarrow{AB} (or \overrightarrow{BA}) is parallel to \overrightarrow{DC} (or \overrightarrow{CD}) and so writes an equation of the form (their **k** component in terms of p of $\pm \overrightarrow{AB}$) = δ (their **k** component in terms of p of $\pm \overrightarrow{DC}$), where $\delta \neq 1$ is a constant
- A1: Correct solution leading to p = 16