Question	Scheme	Marks	AOs
5	Let a point Q have x coordinate $2+h$. So $y_Q = 4(2+h)^2 - 5(2+h)$	B1	1.1b
	${P(2,6), Q(2+h, 4(2+h)^2 - 5(2+h))}$		
	Gradient $PQ = \frac{4(2+h)^2 - 5(2+h) - 6}{2+h-2}$	M1	2.1
	$\frac{\text{Gradient } FQ = {2+h-2}$	A1	1.1b
	$= \frac{4(4+4h+h^2)-5(2+h)-6}{2+h-2}$		
	$=\frac{16+16h+4h^2-10-5h-6}{2+h-2}$		
	$=\frac{4h^2+11h}{h}$		
	=4h+11	M1	1.1b
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \lim_{h \to 0} (4h + 11) = 11$	A1	2.2a
		(5)	
5	4(+1)2 5(+1) (4 2 5)	B1	1.1b
Alt 1	Gradient of chord = $\frac{4(x+h)^2 - 5(x+h) - (4x^2 - 5x)}{x+h-x}$	M1	2.1
		A1	1.1b
	$= \frac{4(x^2 + 2xh + h^2) - 5(x+h) - (4x^2 - 5x)}{x+h-x}$		
	$= \frac{4x^2 + 8xh + 4h^2 - 5x - 5h - 4x^2 + 5x}{x + h - x}$		
	$=\frac{8xh+4h^2-5h}{h}$		
	=8x+4h-5	M1	1.1b
	$\frac{dy}{dx} = \lim_{h \to 0} (8x + 4h - 5) = 8x - 5 \text{ and so, at } P, \frac{dy}{dx} = 8(2) - 5 = 11$	A1	2.2a
		(5)	
(5 marks)			

Questi	Question 5 Notes:		
B1:	Writes down the y coordinate of a point close to P		
	E.g. For a point Q with x coordinate $2+h$, $\{y_Q\} = 4(2+h)^2 - 5(2+h)$		
M1:	Begins the proof by attempting to write the gradient of the chord PQ in terms of h		
A1:	Correct expression for the gradient of the chord PQ in terms of h		
M1:	Correct process to obtain the gradient of the chord PQ as $\alpha h + \beta$; $\alpha, \beta \neq 0$		
A1:	Correctly shows that the gradient of PQ is $4h+11$ and applies a limiting argument to deduce that at		
	the point P on $y = 4x^2 - 5x$, $\frac{dy}{dx} = 11$ E.g. $\lim_{h \to 0} (4h + 11) = 11$		
	Note: δx can be used in place of h		
Alt 1			
B1:	$4(x+h)^2 - 5(x+h)$, seen or implied		
M1:	Begins the proof by attempting to write the gradient of the chord in terms of x and h		
A1:	Correct expression for the gradient of the chord in terms of x and h		
M1:	Correct process to obtain the gradient of the chord as $\alpha x + \beta h + \gamma$; $\alpha, \beta, \gamma \neq 0$		
A1:	Correctly shows that the gradient of the chord is $8x + 4h - 5$ and applies a limiting argument to		
	deduce that when $y = 4x^2 - 5x$, $\frac{dy}{dx} = 8x - 5$. E.g. $\lim_{h \to 0} (8x + 4h - 5) = 8x - 5$		
	Finally, deduces that at the point P, $\frac{dy}{dx} = 11$		
	Note: For Alt 1, δx can be used in place of h		