Question	Scheme	Marks	AOs
4	$f(x) = \frac{12x}{3x+4} x \in \mathbb{R}, x \geqslant 0$		
(a)	$0 \leqslant f(x) < 4$	M1	1.1b
	0 < 1(x) < 4	A1	1.1b
		(2)	
(b)	$y = \frac{12x}{3x+4} \Rightarrow y(3x+4) = 12x \Rightarrow 3xy + 4y = 12x \Rightarrow 4y = 12x - 3xy$	M1	1.1b
	$4y = x(12 - 3y) \Rightarrow \frac{4y}{12 - 3y} = x$	M1	2.1
	Hence $f^{-1}(x) = \frac{4x}{12 - 3x}$ $0 \le x < 4$	A1	2.5
		(3)	
(c)	$ff(x) = \frac{12\left(\frac{12x}{3x+4}\right)}{3\left(\frac{12x}{3x+4}\right)+4}$	M1	1.1b
	$= \frac{\frac{144x}{3x+4}}{\frac{36x+12x+16}{3x+4}}$	M1	1.1b
	$= \frac{144x}{48x + 16} = \frac{9x}{3x + 1} * \{x \in \mathbb{R}, x \ge 0\}$	A1*	2.1
		(3)	
(d)	$\left\{ \mathrm{ff}(x) = \frac{7}{2} \Longrightarrow \right\} \frac{9x}{3x+1} = \frac{7}{2} \Longrightarrow 18x = 21x + 7 \Longrightarrow -3x = 7 \Longrightarrow x = \dots$	M1	1.1b
	Reject $x = -\frac{7}{3}$ As ff(x) is valid for $x \ge 0$, then ff(x) = $\frac{7}{2}$ has no solutions	Al	2.4
		(2)	
(d) Alt 1	$\left\{ \mathbf{ff}(x) = \frac{7}{2} \Rightarrow \right\} \mathbf{f}(x) = \mathbf{f}^{-1} \left(\frac{7}{2}\right) = \frac{4\left(\frac{7}{2}\right)}{12 - 3\left(\frac{7}{2}\right)}$	M1	1.1b
	$\left\{ f(x) = \right\} f^{-1}\left(\frac{7}{2}\right) = \frac{28}{3}$ As $0 \le f(x) < 4$ and as $\frac{28}{3} > 4$, then $ff(x) = \frac{7}{2}$ has no solutions	A1	2.4
		(2)	
			narks)

Quest	ion Scheme	Marks	AOs	
4 (d		M1	1.1b	
Alt 2	As $\frac{7}{2} > 3$, then $ff(x) = \frac{7}{2}$ has no solutions	Al	2.4	
		(2)		
	ion 4 Notes:			
(a) M1:	For one "end" fully correct; e.g. accept $f(x) \ge 0$ (not $x \ge 0$) or $f(x) < 4$ or for both correct "end" values; e.g. accept $0 < f(x) \le 4$.	(not $x < 4$);		
A1:	Correct range using correct notation. Accept $0 \le f(x) < 4$, $0 \le y < 4$, $[0, 4)$, $f(x) \ge 0$ and $f(x) < 4$			
(b)				
M1:	Attempts to find the inverse by cross-multiplying and an attempt to collect all the x-terms (or swapped y-terms) onto one side.			
M1:	A fully correct method to find the inverse.			
A1:	A correct $f^{-1}(x) = \frac{4x}{12 - 3x}$, $0 \le x < 4$, o.e. expressed fully in function notation, including the			
. 4 -	domain, which may be correct or followed through from their part (a) answ	er for their range o	of f	
Note:	Writing $y = \frac{12x}{3x+4}$ as $y = \frac{4(3x+4)-16}{3x+4} \implies y = 4 - \frac{16}{3x+4}$ leads to a correct			
	$f^{-1}(x) = \frac{1}{3} \left(\frac{16}{4 - x} - 4 \right), \ 0 \le x < 4$			
(c)				
M1:	Attempts to substitute $f(x) = \frac{12x}{3x+4}$ into $\frac{12f(x)}{3f(x)+4}$			
M1:	Applies a method of "rationalising the denominator" for their denominator.			
A1*:	Shows $ff(x) = \frac{9x}{3x+1}$ with no errors seen.			
	Note: The domain of $ff(x)$ is not required in this part.			
(d)				
M1:	Sets $\frac{9x}{3x+1}$ to $\frac{7}{2}$ and solves to find $x =$			
A1:	Finds $x = -\frac{7}{3}$, rejects this solution as $ff(x)$ is valid for $x \ge 0$ only			
	Concludes that $ff(x) = \frac{7}{2}$ has no solutions.			

Question 4 Notes Continued:		
(d)		
Alt 1		
M1:	Attempts to find $f^{-1}\left(\frac{7}{2}\right)$	
A1:	Deduces $f(x) = f^{-1}\left(\frac{7}{2}\right) = \frac{28}{3}$ and concludes $ff(x) = \frac{7}{2}$ has no solutions because	
	$f(x) = \frac{28}{3}$ lies outside the range $0 \le f(x) < 4$	
(d)		
Alt 2		
M1:	Evidence that the upper bound of $ff(x)$ is 3	
A1:	$0 \le \text{ff}(x) < 3$ and concludes that $\text{ff}(x) = \frac{7}{2}$ has no solutions because $\frac{7}{2} > 3$	