Question	Scheme	Marks	AOs	
5 (a)(i)	$f(x) = x^3 + ax^2 - ax + 48, \ x \in \mathbb{R}$			
	$f(-6) = (-6)^3 + a(-6)^2 - a(-6) + 48$	M1	1.1b	
	$= -216 + 36a + 6a + 48 = 0 \implies 42a = 168 \implies a = 4 *$	A1*	1.1b	
(a)(ii)	Hence, $f(x) = (x + 6)(x^2 - 2x + 8)$	M1	2.2a	
	$\frac{1(x) - (x + 0)(x - 2x + 0)}{(x + 0)(x - 2x + 0)}$	A1	1.1b	
		(4)		
(b)	$2\log_2(x+2) + \log_2 x - \log_2(x-6) = 3$			
	E.g. • $\log_2(x+2)^2 + \log_2 x - \log_2(x-6) = 3$ • $2\log_2(x+2) + \log_2\left(\frac{x}{x-6}\right) = 3$	M1	1.2	
	$\log_2\left(\frac{x(x+2)^2}{(x-6)}\right) = 3 \qquad \left[\text{or } \log_2\left(x(x+2)^2\right) = \log_2\left(8(x-6)\right)\right]$	M1	1.1b	
	$\left(\frac{x(x+2)^2}{(x-6)}\right) = 2^3 \qquad \text{{i.e. }} \log_2 a = 3 \implies a = 2^3 \text{ or } 8$	B1	1.1b	
	$x(x+2)^2 = 8(x-6) \implies x(x^2+4x+4) = 8x-48$			
	$\Rightarrow x^3 + 4x^3 + 4x = 8x - 48 \Rightarrow x^3 + 4x^3 - 4x + 48 = 0 *$	A1 *	2.1	
		(4)		
(c)	$2\log_2(x+2) + \log_2 x - \log_2(x-6) = 3 \implies x^3 + 4x^3 - 4x + 48 = 0$			
	$\Rightarrow (x+6)(x^2-2x+8)=0$			
	Reason 1: E.g.			
	• $\log_2 x$ is not defined when $x = -6$			
	• $\log_2(x-6)$ is not defined when $x=-6$			
	• $x = -6$, but $\log_2 x$ is only defined for $x > 0$			
	Reason 2:			
	• $b^2 - 4ac = -28 < 0$, so $(x^2 - 2x + 8) = 0$ has no (real) roots			
	At least one of Reason 1 or Reason 2	B1	2.4	
	Both Reason 1 and Reason 2	B1	2.1	
		(2)		
	(10 marks)			

Questi	Question 5 Notes:		
(a)(i)			
M1:	Applies f(-6)		
A1*:	Applies $f(-6) = 0$ to show that $a = 4$		
(a)(ii)			
M1:	Deduces $(x + 6)$ is a factor of $f(x)$ and attempts to find a quadratic factor of $f(x)$ by either equating coefficients or by algebraic long division		
A1:	$(x+6)(x^2-2x+8)$		
(b)			
M1:	Evidence of applying a correct law of logarithms		
M1:	Uses correct laws of logarithms to give either		
	• an expression of the form $\log_2(\mathbf{h}(x)) = k$, where k is a constant		
	• an expression of the form $\log_2(g(x)) = \log_2(h(x))$		
B1:	Evidence in their working of $\log_2 a = 3 \implies a = 2^3$ or 8		
A1*:	Correctly proves $x^3 + 4x^3 - 4x + 48 = 0$ with no errors seen		
(c)			
B1:	See scheme		
B1:	See scheme		