5	Attempts to substitute $=\frac{x+1}{2}$ into $y \Rightarrow y = 4\left(\frac{x+1}{2}\right) - 7 + \frac{1}{(x+1)^2}$	6 +1)	И1	2.1
	Attempts to write as a single fraction		<i>(</i> 1	2.1
	$y = \frac{(2x-5)(x+1)+6}{(x+1)}$	N	И1	2.1
	$y = \frac{2x^2 - 3x + 1}{x + 1} \qquad a = -3, b = 1$	A	A 1	1.1b
(3 marks)				
Notes:				
M1:	Score for an attempt at substituting $t = \frac{x+1}{2}$ or equivalent into $y = 4t - 7 + \frac{3}{t}$			
M1:	Award this for an attempt at a single fraction with a correct common denominator.			
	Their $4\left(\frac{x+1}{2}\right) - 7$ term may be simplified first			
A1:	Correct answer only $y = \frac{2x^2 - 3x + 1}{x + 1}$ $a = -3, b = 1$			

Scheme

Question