Ques	tion	Scheme	Marks	AOs	
1(a	ı)	(i) $\frac{dy}{dx} = 12x^3 - 24x^2$	M1 A1	1.1b 1.1b	
		(ii) $\frac{d^2 y}{dx^2} = 36x^2 - 48x$	A1ft	1.1b	
			(3)		
(b)		Substitutes $x = 2$ into their $\frac{dy}{dx} = 12 \times 2^3 - 24 \times 2^2$	M1	1.1b	
		Shows $\frac{dy}{dx} = 0$ and states "hence there is a stationary point"	A1	2.1	
			(2)		
(c)		Substitutes $x = 2$ into their $\frac{d^2 y}{dx^2} = 36 \times 2^2 - 48 \times 2$	M1	1.1b	
		$\frac{d^2 y}{dx^2} = 48 > 0$ and states "hence the stationary point is a minimum"	A1ft	2.2a	
			(2)		
			(7 marks)		
Notes:					
(a)(i) M1:	Differentiates to a cubic form				
A1:	$\frac{\mathrm{d}y}{\mathrm{d}x} = 12x^3 - 24x^2$				
(a)(ii)					
A1ft:	Achieves a correct $\frac{d^2 y}{dx^2}$ for their $\frac{dy}{dx} = 36x^2 - 48x$				
(b)					
M1:	Substitutes $x = 2$ into their $\frac{dy}{dx}$				
A1:	Shows $\frac{dy}{dx} = 0$ and states "hence there is a stationary point" All aspects of the proof				
	must be correct				
(c)		12			
M1:	Substitutes $x = 2$ into their $\frac{d^2 y}{dr^2}$				
A1ft:	Alter For a	Alternatively calculates the gradient of <i>C</i> either side of $x = 2$ For a correct calculation, a valid reason and a correct conclusion.			
	Foll	low through on an incorrect $\frac{d^2 y}{dx^2}$			