Area
$$R = \frac{40}{3}\sqrt{5}$$

Al 1.1b

(5)

Notes:

B1: States or uses the upper limit $\sqrt{5}$ Score when seen as the solution $x = \sqrt{5}$

M1: Attempts to integrate $4x^2 + 3$ or $\pm \left(23 - \left(4x^2 + 3\right)\right)$ which may be simplified.

Look for one term from $4x^2 + 3$ with $x^n \to x^{n+1}$ It is not sufficient just to integrate 23.

A1: Correct integration. Ignore any $+c$ or spurious integral signs. Indices must be processed.

Look for $\int 4x^2 + 3\left\{dx\right\} = \frac{4}{3}x^3 + 3x$ or $\pm \int 20 - 4x^2\left\{dx\right\} = \pm \left(20x - \frac{4}{3}x^3\right)$ if (line -curve) or (curve - line) used.

M1: Full and complete method to find the area of R including the substitution of their upper limit. The upper limit must come from an attempt to solve $4x^2 + 3 = 23$
The lower limit might not be seen but if seen it should be 0.

See scheme for two possible ways. Condone a sign slip if (line -curve) or (curve - line) used.

A1: $\frac{40}{3}\sqrt{5}$ following correct algebraic integration.

Scheme

 $4x^2 + 3 \, \mathrm{d}x = \frac{4}{3}x^3 + 3x$

 $23\sqrt{5} - \left[\frac{4}{3}x^3 + 3x\right]^{\sqrt{5}} = \dots$

 $\left[20x - \frac{4}{3}x^3\right]^{\sqrt{5}} = \dots$

States or uses the upper limit is $\sqrt{5}$

Full method of finding the area of *R*

Marks

B1

M1

A1

M1

A1

AOs

1.1b

1.1b

1.1b

2.1

1.1b

Question

5

A1:

B1:

M1:

Alternative using $\int x \, dy$

Look for ... $(y\pm 3)^{\frac{1}{2}} \rightarrow ... (y\pm 3)^{\frac{3}{2}}$

e.g.

e.g.

Correct integration $\int \frac{(y-3)^{\frac{1}{2}}}{2} \{dy\} = \frac{1}{3}(y-3)^{\frac{3}{2}}$ Ignore any +c or spurious integral signs.

If using (curve – line) then allow recovery but they must make the $-\frac{40}{3}\sqrt{5}$ positive.

States or uses limits 3 and 23. It must be for a clear attempt to integrate with respect to y

Attempts to rearrange to x = and integrate $\sqrt{\frac{y-3}{4}}$ condoning slips on the rearrangement.

M1:	Full and complete method to find the area of <i>R</i> including the substitution of their limits.
	In this case it would be for substituting 23 and 3 and subtracting either way round into their changed expression in terms of y
A1:	$\frac{40}{5}\sqrt{5}$ following correct algebraic integration.