Question	Scheme	Marks	AOs
10 (a)	States either $x < -3$ or $0 < x < 2$	M1	1.1b
	States $\{x \in \mathbb{R} : x < -3\} \cup \{x \in \mathbb{R} : 0 < x < 2\}$ oe using set notation	A1	2.5
		(2)	
(b)	Point Q as $f''(x) < 0$ at maximum point	B1	2.4
		(1)	
(c)	States either $k = 10$ or $k = 5$	B1	1.1b
	States both $k = 10$ and $k = 5$	B1	3.1a
		(2)	
(d)	Any correct point where $f'(x) = 0$	B1	1.1b
	Correct shape	M1	1.1b
	Correct shape and position	A1	1.1b
		(3)	
(8 marks)			

Notes:

(a)

M1: States either region. Condone \leq for <

A1: States given answer but condone $\{x \in \mathbb{R} : x < -3 \cup 0 < x < 2\}$ oe using set notation.

```
Allow \{x \in \mathbb{R} : x < -3 \text{ or } 0 < x < 2\} or even \{x < -3 \cup 0 < x < 2\} but not \{x < -3 \cap 0 < x < 2\} or not \{x < -3, 0 < x < 2\}
```

(b)

- **B1:** Gives valid reason. E.g f''(x) < 0 at maximum point
- (c)

B1: Determines that y = k crosses y = f(x) 3 times only when k = 10 or when k = 5

B1: Determines that y = k crosses y = f(x) 3 times only when k = 10 and when k = 5 only

(d)

B1: Graph crosses x-axis at any x value corresponding to point P, Q or R

M1: Correct shape

A1: Fully correct