Question	Scheme	Marks	AOs
3 (a)	$\overrightarrow{QR} = \overrightarrow{PR} - \overrightarrow{PQ} = 13\mathbf{i} - 15\mathbf{j} - (3\mathbf{i} + 5\mathbf{j})$	M1	1.1a
	$=10\mathbf{i}-20\mathbf{j}$	A1	1.1b
		(2)	
(b)	$\left \overline{QR} \right = \sqrt{"10"^2 + "(-20)"^2}$	M1	2.5
	$=10\sqrt{5}$	A1ft	1.1b
		(2)	
(c)	$\overrightarrow{PS} = \overrightarrow{PQ} + \frac{3}{5}\overrightarrow{QR} = 3\mathbf{i} + 5\mathbf{j} + \frac{3}{5}("10\mathbf{i} - 20\mathbf{j''}) = \dots$		
	or	M1	3.1a
	$\overrightarrow{PS} = \overrightarrow{PR} + \frac{2}{5}\overrightarrow{RQ} = 13\mathbf{i} - 15\mathbf{j} + \frac{2}{5}("-10\mathbf{i} + 20\mathbf{j"}) = \dots$		
	$=9\mathbf{i}-7\mathbf{j}$	A1	1.1b
		(2)	
(6 marks) Notes			
 (a) M1: Attempts subtraction either way round. This cannot be awarded for adding the two vectors. If no method shown it may be implied by one correct component. eg 10i – 10j on its own can score M1. A1: Correct answer. Allow 10i – 20j and ¹⁰ – 20 but not ¹⁰ⁱ – 20j (b) M1: Correct use of Pythagoras. Attempts to "square and add" before square rooting. The embedded values are sufficient. Follow through on their <i>QR</i> 			
(c)	$10\sqrt{5}$ following (a) of the form $\pm 10\mathbf{i} \pm 20\mathbf{j}$ Full attempt at finding a \overrightarrow{PS} . They must be attempting $\overrightarrow{PQ} \pm \frac{3}{5} \overrightarrow{QR}$ or		

 $\overrightarrow{PS} = \overrightarrow{PR} \pm \frac{2}{5} \overrightarrow{RQ}$ but condone arithmetical slips after that.

Cannot be scored for just stating eg $\overrightarrow{PQ} \pm \frac{3}{5} \overrightarrow{QR}$

Follow through on their \overrightarrow{QR} . Terms do not need to be collected for this mark. If no method shown it may be implied by one correct component following through on their \overrightarrow{QR}

A1: Correct vector as shown. Allow $9\mathbf{i} - 7\mathbf{j}$ and $\begin{pmatrix} 9\\ -7 \end{pmatrix}$. Only withhold the mark for $\begin{pmatrix} 9\mathbf{i}\\ -7\mathbf{j} \end{pmatrix}$ if the mark has not already been withheld in (a) for $\begin{pmatrix} 10\mathbf{i}\\ -20\mathbf{j} \end{pmatrix}$

Alt (c) (Expressing \overrightarrow{PS} in terms of the given vectors) They must be attempting $\frac{2}{5}\overrightarrow{PQ} + \frac{3}{5}\overrightarrow{PR}$

M1:
$$(\overrightarrow{PS} = \overrightarrow{PQ} + \frac{3}{5}\overrightarrow{QR} = \overrightarrow{PQ} + \frac{3}{5}(\overrightarrow{PR} - \overrightarrow{PQ}))$$

$$\Rightarrow \frac{2}{5}\overrightarrow{PQ} + \frac{3}{5}\overrightarrow{PR} = \frac{2}{5}(3\mathbf{i} + 5\mathbf{j}) + \frac{3}{5}(13\mathbf{i} - 15\mathbf{j}) = \dots$$

A1: Correct vector as shown. Allow 9i - 7j and $\begin{pmatrix} 9\\ -7 \end{pmatrix}$.

Only withhold the mark for $\begin{pmatrix} 9\mathbf{i} \\ -7\mathbf{j} \end{pmatrix}$ if the mark has not already been withheld in (a) for $\begin{pmatrix} 10\mathbf{i} \\ -20\mathbf{j} \end{pmatrix}$