| 16. The curve C has equation $y = f(x)$ where | | |--|------------| | $f(x) = ax^3 + 15x^2 - 39x + b$ | | | and a and b are constants. | | | Given | | | • the point (2, 10) lies on C | | | • the gradient of the curve at $(2, 10)$ is -3 | | | (a) (i) show that the value of a is -2 | | | (ii) find the value of b . | | | | (4) | | (b) Hence show that C has no stationary points. | (3) | | (c) Write $f(x)$ in the form $(x-4)Q(x)$ where $Q(x)$ is a quadratic expression to be found. | (3) | | | (2) | | (d) Hence deduce the coordinates of the points of intersection of the curve with equation | | | $y = \mathbf{f}(0.2x)$ | | | and the coordinate axes. | | | | (2) |