16. The curve C has equation $y = f(x)$ where	
$f(x) = ax^3 + 15x^2 - 39x + b$	
and a and b are constants.	
Given	
• the point (2, 10) lies on C	
• the gradient of the curve at $(2, 10)$ is -3	
(a) (i) show that the value of a is -2	
(ii) find the value of b .	
	(4)
(b) Hence show that C has no stationary points.	(3)
(c) Write $f(x)$ in the form $(x-4)Q(x)$ where $Q(x)$ is a quadratic expression to be found.	(3)
	(2)
(d) Hence deduce the coordinates of the points of intersection of the curve with equation	
$y = \mathbf{f}(0.2x)$	
and the coordinate axes.	
	(2)