Question	Scheme	Marks	AOs
14 (a)	Deduces $g(x) = ax^3 + bx^2 + ax$	B1	2.2a
	Uses $(2,9) \Longrightarrow 9 = 8a + 4b + 2a$	M1	2.1
	$\Rightarrow 10a + 4b = 9$	A1	1.1b
	Uses $g'(2) = 0 \Longrightarrow 0 = 12a + 4b + a$	M1	2.1
	$\Rightarrow 13a + 4b = 0$	A1	1.1b
	Solves simultaneously $\Rightarrow a, b$	dM1	1.1b
	$g(x) = -3x^3 + \frac{39}{4}x^2 - 3x$	A1	1.1b
		(7)	
(b)	Attempts $g''(x) = -18x + \frac{39}{2}$ and substitutes $x = 2$	M1	1.1b
	$g''(2) = -\frac{33}{2} < 0 \text{ hence maximum}$	A1	2.4
		(2)	
(9 marks)			

Notes

(a)

B1: Uses the information given to deduce that $g(x) = ax^3 + bx^2 + ax$. (Seen or implied)

M1: Uses the fact that (2,9) lies on the curve so uses x = 2, y = 9 within a cubic function

A1: For a simplified equation in just two variables. E.g. 10a + 4b = 9

M1: Differentiates their cubic to a quadratic and uses the fact that g'(2) = 0 to obtain an equation in *a* and *b*.

A1: For a different simplified equation in two variables E.g. 13a + 4b = 0

dM1: Solves simultaneously $\Rightarrow a = ..., b = ...$ It is dependent upon the B and both M's

A1:
$$g(x) = -3x^3 + \frac{39}{4}x^2 - 3x$$

(b)

M1: Attempts $g''(x) = -18x + \frac{39}{2}$ and substitutes x = 2. Award for second derivatives of the form g''(x) = Ax + B with x = 2 substituted in.

Alternatively attempts to find the value of their g'(x) or g(x) either side of x = 2 (by substituting a value for x within 0.5 either side of 2)

A1: $g''(2) = -\frac{33}{2} < 0$ hence maximum. (allow embedded values but they must refer to the sign or that it is less than zero)

If $g'(x) = -9x^2 + \frac{39}{2}x - 3$ or $g(x) = -3x^3 + \frac{39}{4}x^2 - 3x$ is calculated either side of x = 2 then the values must be correct or embedded correctly (you will need to check these) they need to compare g'(x) > 0 to the left of x = 2 and g'(x) < 0 to the right of x = 2 or g(x) < 9 to the left and g(x) > 9 to the right of x = 2 hence maximum.

Note If they only sketch the cubic function $g(x) = -3x^3 + \frac{39}{4}x^2 - 3x$ then award M1A0