Question	Scheme	Marks	AOs
10 (a)	$g(5) = 2 \times 5^3 + 5^2 - 41 \times 5 - 70 = \dots$	M1	1.1a
	$g(5) = 0 \Rightarrow (x-5)$ is a factor, hence $g(x)$ is divisible by $(x-5)$.	A1	2.4
		(2)	
(b)	$2x^{3} + x^{2} - 41x - 70 = (x - 5)(2x^{2}x \pm 14)$	M1	1.1b
	$=(x-5)(2x^2+11x+14)$	A1	1.1b
	Attempts to factorise quadratic factor	dM1	1.1b
	(g(x)) = (x-5)(2x+7)(x+2)	A1	1.1b
		(4)	
(c)	$\int 2x^{3} + x^{2} - 41x - 70 dx = \frac{1}{2}x^{4} + \frac{1}{3}x^{3} - \frac{41}{2}x^{2} - 70x$	M1 A1	1.1b 1.1b
	Deduces the need to use $\int_{-2}^{5} g(x) dx$ $-\frac{1525}{3} - \frac{190}{3}$	M1	2.2a
	Area = $571\frac{2}{3}$	A1	2.1
		(4)	
(10 marks)			

(a)

Notes

M1: Attempts to calculate g(5) Attempted division by (x-5) is M0 Look for evidence of embedded values or two correct terms of g(5) = 250 + 25 - 205 - 70 = ...

A1: Correct calculation, reason and conclusion. It must follow M1. Accept, for example, $g(5) = 0 \Rightarrow (x-5)$ is a factor, hence divisible by (x-5) $g(5) = 0 \Rightarrow (x-5)$ is a factor \checkmark

Do not allow if candidate states

 $f(5) = 0 \Rightarrow (x-5)$ is a factor, hence divisible by (x-5) (It is not f)

 $g(x) = 0 \Rightarrow (x-5)$ is a factor (It is not g(x) and there is no conclusion)

This may be seen in a preamble before finding g(5) = 0 but in these cases there must be a minimal statement ie QED, "proved", tick etc.

(b)

- M1: Attempts to find the quadratic factor by inspection (correct coefficients of first term and \pm last term) or by division (correct coefficients of first term and \pm second term). Allow this to be scored from division in part (a)
- A1: $(2x^2+11x+14)$ You may not see the (x-5) which can be condoned
- **dM1:** Correct attempt to factorise their $(2x^2 + 11x + 14)$

A1:
$$(g(x)=)(x-5)(2x+7)(x+2)$$
 or $(g(x)=)(x-5)(x+3.5)(2x+4)$

It is for the product of factors and not just a statement of the three factors Attempts with calculators via the three roots are likely to score 0 marks. The question was "Hence" so the two M's must be awarded.

- M1: For $x^n \to x^{n+1}$ for any of the terms in x for g(x) so $2x^3 \to \dots x^4, x^2 \to \dots x^3, -41x \to \dots x^2, -70 \to \dots x$
- A1: $\int 2x^{3} + x^{2} 41x 70 \, dx = \frac{1}{2}x^{4} + \frac{1}{3}x^{3} \frac{41}{2}x^{2} 70x$ which may be left unsimplified (ignore any reference to +C)
- M1: Deduces the need to use $\int_{-2}^{3} g(x) dx$.

This may be awarded from the limits on their integral (either way round) or from embedded values which can be subtracted either way round.

A1: For clear work showing all algebraic steps leading to area = $571\frac{2}{3}$ oe So allow $\int_{-2}^{5} 2x^3 + x^2 - 41x - 70 \, dx = \left[\frac{1}{2}x^4 + \frac{1}{3}x^3 - \frac{41}{2}x^2 - 70x\right]_{-2}^{5} = -\frac{1715}{3} \Rightarrow \text{ area} = \frac{1715}{3}$ for 4 marks

Condone spurious notation, as long as the algebraic steps are correct. If they find $\int g(x) dx$

then withhold the final mark if they just write a positive value to this integral since

$$\int_{-2}^{3} g(x) dx = -\frac{1715}{3}$$

Note $\int_{-2}^{5} 2x^3 + x^2 - 41x - 70 \, dx \Rightarrow \frac{1715}{3}$ with no algebraic integration seen scores M0A0M1A0