Question	Scheme	Marks	AOs
7 (a)	$x^n \rightarrow x^{n+1}$	M1	1.1b
	$\int \left(\frac{5}{2\sqrt{x}} + 3\right) \mathrm{d}x = 5\sqrt{x} + 3x$	A1	1.1b
	$\left[5\sqrt{x} + 3x\right]_{1}^{k} = 4 \Longrightarrow 5\sqrt{k} + 3k - 8 = 4$	dM1	1.1b
	$3k + 5\sqrt{k} - 12 = 0 $	A1*	2.1
		(4)	
(b)	$3k + 5\sqrt{k} - 12 = 0 \Longrightarrow \left(3\sqrt{k} - 4\right)\left(\sqrt{k} + 3\right) = 0$	M1	3.1a
	$\sqrt{k} = \frac{4}{3}, (-3)$	A1	1.1b
	$\sqrt{k} = \Longrightarrow k =$ oe	dM1	1.1b
	$k = \frac{16}{9}, \aleph$	A1	2.3
		(4)	
(8 marks)			

Notes

(a)

- M1: For $x^n \to x^{n+1}$ on correct indices. This can be implied by the sight of either $x^{\frac{1}{2}}$ or x
- A1: $5\sqrt{x} + 3x$ or $5x^{\frac{1}{2}} + 3x$ but may be unsimplified. Also allow with +c and condone any spurious notation.
- **dM1:** Uses both limits, subtracts, and sets equal to 4. They cannot proceed to the given answer without a line of working showing this.
- A1*: Fully correct proof with no errors (bracketing or otherwise) leading to given answer.

(b)

M1: For a correct method of solving. This could be as the scheme, treating as a quadratic in \sqrt{k} and using allowable method to solve including factorisation, formula etc.

Allow values for \sqrt{k} to be just written down, e.g. allow $\sqrt{k} = \pm \frac{4}{3}$, (± 3)

Alternatively score for rearranging to $5\sqrt{k} = 12 - 3k$ and then squaring to get $...k = (12 - 3k)^2$

A1: $\sqrt{k} = \frac{4}{3}, (-3)$

Or in the alt method it is for reaching a correct 3TQ equation $9k^2 - 97k + 144 = 0$

- **dM1:** For solving to find at least one value for k. It is dependent upon the first M mark. In the main method it is scored for squaring their value(s) of \sqrt{k} In the alternative scored for solving their 3TQ by an appropriate method
- A1: Full and rigorous method leading to $k = \frac{16}{9}$ only. The 9 must be rejected.