	$x\sqrt{2} - \sqrt{16} = x \Rightarrow x\left(\sqrt{2} - 1\right) = \sqrt{16} \Rightarrow x = \frac{1}{\sqrt{2} - 1}$	IVII	1.10
	$\Rightarrow x = \frac{\sqrt{18}}{\sqrt{2} - 1} \times \frac{\sqrt{2} + 1}{\sqrt{2} + 1}$	dM1	3.1a
	$x = \frac{\sqrt{18}\left(\sqrt{2} + 1\right)}{1} = 6 + 3\sqrt{2}$	A1	1.1b
		(3)	
(ii)	$4^{3x-2} = \frac{1}{2\sqrt{2}} \Rightarrow 2^{6x-4} = 2^{-\frac{3}{2}}$	M1	2.5
	$6x - 4 = -\frac{3}{2} \Rightarrow x = \dots$	dM1	1.1b
	$x = \frac{5}{12}$	A1	1.1b
		(2)	

Scored for a complete method to find x. In the main scheme it is for making x the subject

Scheme

Notes

(i)

Question

3 (i)

dM1:

M1: Combines the terms in x, factorises and divides to find x. Condone sign slips and ignore any attempts to simplify $\sqrt{18}$ Alternatively squares both sides $x\sqrt{2} - \sqrt{18} = x \Rightarrow 2x^2 - 12x + 18 = x^2$

 $r.\sqrt{2}-\sqrt{18}-r \rightarrow r(\sqrt{2}-1)-\sqrt{18} \rightarrow r$

and then multiplying both numerator and denominator by $\sqrt{2} + 1$ In the alternative it is for squaring both sides to produce a 3TQ and then factorising their quadratic equation to find x. (usual rules apply for solving quadratics)

 $x = 6 + 3\sqrt{2}$ only following a correct intermediate line. Allow $\frac{6+3\sqrt{2}}{1}$ as an intermediate **A1**:

line.

In the alternative method the $6-3\sqrt{2}$ must be discarded.

Uses correct mathematical notation and attempts to set both sides as powers of 2 or 4. M1:

Eg $2^{ax+b} = 2^c$ or $4^{dx+e} = 4^f$ is sufficient for this mark. Alternatively uses logs (base 2 or 4) to get a linear equation in x.

 $4^{3x-2} = \frac{1}{2\sqrt{2}} \Rightarrow \log_2 4^{3x-2} = \log_2 \frac{1}{2\sqrt{2}} \Rightarrow 2(3x-2) = \log_2 \frac{1}{2\sqrt{2}}$. Or $4^{3x-2} = \frac{1}{2\sqrt{2}} \Rightarrow 3x - 2 = \log_4 \frac{1}{2\sqrt{2}}$

Or $4^{3x-2} = \frac{1}{2\sqrt{2}} \Rightarrow 4^{3x} = 4\sqrt{2} \Rightarrow 3x = \log_4 4\sqrt{2}$

Marks

М1

AOs

(6 marks)

dM1: Scored for a complete method to find x.

Scored for setting the indices of 2 or 4 equal to each other and then solving to find x. There must be an attempt on both sides.

You can condone slips for this mark Eg bracketing errors
$$4^{3x-2} = 2^{2\times 3x-2}$$
 or $\frac{1}{2\sqrt{2}} = 2^{-1+\frac{1}{2}}$

In the alternative method candidates cannot just write down the answer to the rhs.

So expect some justification. E.g.
$$\log_2 \frac{1}{2\sqrt{2}} = \log_2 2^{-\frac{3}{2}} = -\frac{3}{2}$$

or $\log_4 \frac{1}{2\sqrt{2}} = \log_4 2^{-\frac{3}{2}} = -\frac{3}{2} \times \frac{1}{2}$ condoning slips as per main scheme
or $3x = \log_4 4\sqrt{2} \Rightarrow 3x = 1 + \frac{1}{4}$

A1: $x = \frac{5}{12}$ with correct intermediate work

$$x = \frac{5}{12}$$
 with correct intermediate work