Question	Scheme	Marks	AOs
1	Attempts to differentiate $x^n \rightarrow x^{n-1}$ seen once	M1	1.1b
	$y = 2x^{3} - 4x + 5 \Longrightarrow \frac{dy}{dx} = 6x^{2} - 4$	A1	1.1b
	For substituting $x = 2$ into their $\frac{dy}{dx} = 6x^2 - 4$	dM1	1.1b
	For a correct method of finding a tangent at $P(2,13)$. Score for $y-13 = "20"(x-2)$	ddM1	1.1b
	y = 20x - 27	A1	1.1b
		(5)	
(5 marks)			

Notes

M1: Attempts to differentiate $x^n \to x^{n-1}$ seen once. Score for $x^3 \to x^2$ or $\pm 4x \to 4$ or $\pm 5 \to 0$

A1:
$$\left(\frac{dy}{dx}\right) = 6x^2 - 4$$
 which may be unsimplified $6x^2 - 4 + C$ is A0

- **dM1:** Substitutes x = 2 into their $\frac{dy}{dx}$. The first M must have been awarded. Score for sight of embedded values, or sight of " $\frac{dy}{dx}$ at x = 2 is" or a correct follow through. Note that 20 on its own is not enough as this can be done on a calculator.
- **ddM1:** For a correct method of finding a tangent at P(2,13). Score for y-13 = "20"(x-2) It is dependent upon both previous M's.

If the form y = mx + c is used they must proceed as far as c = ...

A1: Completely correct y = 20x - 27 (and in this form)