Question	Scheme	Marks	AOs
3 (a)	$x^n \rightarrow x^{n+1}$	M1	1.1b
	$\int \left(\frac{4}{x^3} + kx\right) dx = -\frac{2}{x^2} + \frac{1}{2}kx^2 + c$	A1 A1	1.1b 1.1b
		(3)	
(b)	$\left[-\frac{2}{x^2} + \frac{1}{2}kx^2\right]_{0.5}^2 = \left(-\frac{2}{2^2} + \frac{1}{2}k \times 4\right) - \left(-\frac{2}{\left(0.5\right)^2} + \frac{1}{2}k \times \left(0.5\right)^2\right) = 8$	M1	1.1b
	$7.5 + \frac{15}{8}k = 8 \Longrightarrow k = \dots$	dM1	1.1b
	$k = \frac{4}{15}$ oe	A1	1.1b
		(3)	
(6 marks)			
Notes			
(a)			
M1: For $x^n \to x^{n+1}$ for either x^{-3} or x^1 . This can be implied by the sight of either x^{-2} or x^2 .			
Condone " unprocessed" values here. Eg. x^{-3+1} and x^{1+1}			
A1: Either term correct (un simplified).			
Accept $4 \times \frac{x^{-2}}{-2}$ or $k \frac{x^2}{2}$ with the indices processed.			
A1: Correct (and simplified) with $+c$.			
Ignore spurious notation e.g. answer appearing with an $\int sign or with dx$ on the end.			
Accept $-\frac{2}{x^2} + \frac{1}{2}kx^2 + c$ or exact simplified equivalent such as $-2x^{-2} + k\frac{x^2}{2} + c$			
(b)			
M1: For substituting both limits into their $-\frac{2}{x^2} + \frac{1}{2}kx^2$, subtracting either way around and setting			
equal to 8. Allow this when using a changed function. (so the M in part (a) may not have been awarded). Condone missing brackets. Take care here as substituting 2 into the original function gives the same result as the integrated function so you will have to consider both limits.			
dM1: For solving a linear equation in k . It is dependent upon the previous M only Don't be too concerned by the mechanics here. Allow for a linear equation in k leading to $k =$			
A1: $k = \frac{4}{15}$ or exact equivalent. Allow for $\frac{m}{n}$ where <i>m</i> and <i>n</i> are integers and $\frac{m}{n} = \frac{4}{15}$			
Condone the recurring decimal $0.2\dot{6}$ but not 0.266 or 0.267 Please remember to isw after a correct answer			