

 Attempt at using a changed gradient to find equation of 		1
normal		
• Correct attempt to find where normal cuts the x - axis		
$y = \frac{32}{x^2} + 3x - 8 \Longrightarrow \frac{dy}{dx} = -\frac{64}{x^3} + 3$	M1 A1	1.1b 1.1b
For a correct method of attempting to find		
Either the equation of the normal: this requires substituting $x = 4$ in their $\frac{dy}{dx} = -\frac{64}{x^3} + 3 = (2)$, then using the perpendicular	dM1	
gradient rule to find the equation of normal $y-6 = "-\frac{1}{2}"(x-4)$		2.1
Or where the equation of the normal at $(4,6)$ cuts the x - axis. As above but may not see equation of normal. Eg		
$0-6 = "-\frac{1}{2}"(x-4) \Longrightarrow x =$ or an attempt using just gradients		
$"-\frac{1}{2}" = \frac{6}{a-4} \Longrightarrow a = \dots$		
Normal cuts the x-axis at $x=16$	A1	1.1b
For the complete strategy of finding the values of the two key		
 areas. Points that must be seen are There must be an attempt to find the area under the curve by integrating between 2 and 4 There must be an attempt to find the area of a triangle using 1/2 × ('16'-4)×6 or ∫^{"16'}/₄ "(-1/2 x+8)" dx 	Ml	3.1a
$\int \frac{32}{x^2} + 3x - 8 \mathrm{d}x = -\frac{32}{x} + \frac{3}{2}x^2 - 8x$	M1 A1	1.1b 1.1b
Area under curve = = $\left[-\frac{32}{x} + \frac{3}{2}x^2 - 8x\right]_2^4 = (-16) - (-26) = (10)$	dM1	1.1b
Total area $=10 + 36 = 46 *$	Al*	2.1
	(10)	
	(1	0 mark
 (a) The first 5 marks are for finding the normal to the curve cuts the x - axis M1: For the complete strategy of finding where the normal cuts the x- axis. See M1: Differentiates with at least one index reduced by one 	(1	.0 m
$\mathbf{A1:} \ \frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{64}{x^3} + 3$		
IM1: Method of finding either the equation of the normal at (4, 6). or where the equation of the normal at (4, 6) cuts the x - axis See scheme. It is dependent upon having gained the M mark for	differentia	ntion.

See scheme. It is dependent upon having gained the M mark for differentiation.

A1: Normal cuts the *x*-axis at x = 16The next 5 marks are for finding the area *R*

M1: For the complete strategy of finding the values of two key areas. See scheme

M1: Integrates
$$\int \frac{32}{x^2} + 3x - 8 \, dx$$
 raising the power of at least one index

A1:
$$\int \frac{32}{x^2} + 3x - 8 \, dx = -\frac{32}{x} + \frac{3}{2}x^2 - 8x$$
 which may be unsimplified

dM1: Area =
$$\left[-\frac{32}{x} + \frac{3}{2}x^2 - 8x\right]_2^4 = (-16) - (-26) = (10)$$

It is dependent upon having scored the M mark for integration, for substituting in both 4 and 2 and subtracting either way around. The above line shows the minimum allowed working for a correct answer.

A1*: Shows that the area under curve = 46. No errors or omissions are allowed

A number of candidates are equating the line and the curve (or subtracting the line from the curve) The last 5 marks are scored as follows.

M1: For the complete strategy of finding the values of the two key areas. Points that must be seen are

- There must be an attempt to find the area BETWEEN the line and the curve either way around by integrating between 2 and 4
- There must be an attempt to find the area of a triangle using $\frac{1}{2} \times ('16'-2) \times (-\frac{1}{2} \times 2 + 8)$ or

via integration
$$\int_{2}^{16} \left("-\frac{1}{2}x + 8" \right) dx$$

M1: Integrates $\int \left(\left\| -\frac{1}{2}x + 8 \right\| \right) - \left(\frac{32}{x^2} + 3x - 8 \right) dx$ either way around and raises the power of at least

one index by one

A1:
$$\pm \left(-\frac{32}{x} + \frac{7}{4}x^2 - 16x \right)$$
 must be correct
dM1: Area = $\int_{2}^{4} \left(\left\| -\frac{1}{2}x + 8 \right\| \right) - \left(\frac{32}{x^2} + 3x - 8 \right) dx = \dots$ either way around

A1: Area = 49 - 3 = 46

NB: Watch for candidates who calculate the area under the curve between 2 and 4 = 10 and subtract this from the large triangle = 56. They will lose both the strategy mark and the answer mark.