Question	Scheme	Marks	AOs
8 (a)(i)	$C = \frac{1500}{v} + \frac{2v}{11} + 60 \Longrightarrow \frac{dC}{dv} = -\frac{1500}{v^2} + \frac{2}{11}$	M1 A1	3.1b 1.1b
	Sets $\frac{dC}{dv} = 0 \Longrightarrow v^2 = 8250$	M1	1.1b
	$\Rightarrow v = \sqrt{8250} \Rightarrow v = 90.8 (\mathrm{km h^{-1}})$	A1	1.1b
(ii)	For substituting their $v = 90.8$ in $C = \frac{1500}{v} + \frac{2v}{11} + 60$	M1	3.4
	Minimum cost =awrt (\pounds) 93	A1 ft	1.1b
		(6)	
(b)	Finds $\frac{d^2C}{dv^2} = +\frac{3000}{v^3}$ at $v = 90.8$	M1	1.1b
	$\frac{d^2 C}{dv^2} = (+0.004) > 0 \text{ hence minimum (cost)}$	A1 ft	2.4
		(2)	
(c)	It would be impossible to drive at this speed over the whole journey	B1	3.5b
		(1)	
	(9 marks)		

Notes

(a)(i)

M1: Attempts to differentiate (deals with the powers of *v* correctly).

Look for an expression for $\frac{dC}{dv}$ in the form $\frac{A}{v^2} + B$

$$\mathbf{A1:} \left(\frac{\mathrm{d}C}{\mathrm{d}v}\right) = -\frac{1500}{v^2} + \frac{2}{11}$$

A number of students are solving part (a) numerically or graphically. Allow these students to pick up the M1 A1 here from part (b) when they attempt the second derivative.

M1: Sets $\frac{dC}{dv} = 0$ (which may be implied) and proceeds to an equation of the type $v^n = k, k > 0$

Allow here equations of the type $\frac{1}{v^n} = k, k > 0$

A1: $v = \sqrt{8250}$ or $5\sqrt{330}$ awrt 90.8 (km h⁻¹).

As this is a speed withhold this mark for answers such as $v = \pm \sqrt{8250}$

* Condone $\frac{dC}{dv}$ appearing as $\frac{dy}{dx}$ or perhaps not appearing at all. Just look for the rhs.

(a)(ii)

M1: For a correct method of finding C = from their solution to $\frac{dC}{dv} = 0$.

Do not accept attempts using negative values of v.

Award if you see v = ..., C = ... where the v used is their solution to (a)(i).

A1ft: Minimum cost = awrt (£) 93. Condone the omission of units Follow through on sensible values of v. 60 < v < 110

v	С
60	95.9
65	94.9
70	94.2
75	93.6
80	93.3
85	93.1
90	93.0
95	93.1
100	93.2
105	93.4
110	93.6

(b)

M1: Finds $\frac{d^2C}{dv^2}$ (following through on their $\frac{dC}{dv}$ which must be of equivalent difficulty) and attempts to find its value / sign at their v

Allow a substitution of their answer to (a) (i) in their $\frac{d^2C}{dv^2}$

Allow an explanation into the sign of $\frac{d^2C}{dv^2}$ from its terms (as v > 0)

A1ft: $\frac{d^2C}{dv^2} = +0.004 > 0$ hence minimum (cost). Alternatively $\frac{d^2C}{dv^2} = +\frac{3000}{v^3} > 0$ as v > 0

Requires a correct calculation or expression, a correct statement and a correct conclusion.

Follow through on their v (v > 0) and their $\frac{d^2 C}{dv^2}$

* Condone $\frac{d^2C}{dv^2}$ appearing as $\frac{d^2y}{dx^2}$ or not appearing at all for the M1 but for the A1 the correct notation must be used (accept notation C'').

(c)

B1: Gives a limitation of the given model, for example

- It would be impossible to drive at this speed over the whole journey
- The traffic would mean that you cannot drive at a constant speed
- Any statement that implies that the speed could not be constant is acceptable.