Question	Scheme	Marks	AOs
10(a)	Attempts to find the radius $\sqrt{(2-2)^2+(5-3)^2}$ or radius ²	M1	1.1b
	Attempts $(x-2)^{2} + (y-5)^{2} = 'r'^{2}$	M1	1.1b
	Correct equation $(x-2)^{2} + (y-5)^{2} = 20$	A1	1.1b
		(3)	
(b)	Gradient of radius <i>OP</i> where <i>O</i> is the centre of $C = \frac{5-3}{22} = \left(\frac{1}{2}\right)$	M1	1.1b
	Equation of <i>l</i> is $-2 = \frac{y-3}{x+2}$	dM1	3.1a
	Any correct form $y = -2x - 1$	A1	1.1b
	Method of finding <i>k</i> Substitute $x = 2$ into their $y = -2x - 1$	M1	2.1
	k = -5	A1	1.1b
		(5)	
(8 marks)			

Notes:

(a)

M1: As scheme or states form of circle is $(x-2)^2 + (y-5)^2 = r'^2$

M1: As scheme or substitutes (-2,3) into $(x-2)^2 + (y-5)^2 = 'r^{2}$

A1: For a correct equation

If students use $x^2 + y^2 + 2fx + 2gy + c = 0$ M1: f = 2, g = 5 M1: substitutes (2,5) to find value of c

A1:
$$x^2 + y^2 - 4x - 10y + 9 = 0$$

(b)

M1: Attempts to find the gradient of OP where O is the centre of C

dM1: For a complete strategy of finding the equation of *l* using the perpendicular gradient to *OP* and the point (-2,3).

A1: Any correct form of *l* Eg y = -2x - 1

M1: Scored for the key step of finding k. In this method they are required to substitute (2, k) in their y = -2x - 1 and solve for k.

A1: k = -5

Alt using Pythagoras' theorem

M1: Attempts Pythagoras to find both PQ and OQ in terms of k (where O is centre of C) dM1: For the complete strategy of using Pythagoras theorem on triangle POQ to form an equation in k

A1: A correct equation in k Eg. $20 + (k-3)^2 + 16 = (k-5)^2$

M1: Scored for a correct attempt to solve their quadratic to find *k*.

A1: k = -5