

rigui e 3

(8)

The curve C_1 , shown in Figure 3, has equation $y = 4x^2 - 6x + 4$.

The point
$$P\left(\frac{1}{2}, 2\right)$$
 lies on C_1

The curve C_2 , also shown in Figure 3, has equation $y = \frac{1}{2}x + \ln(2x)$.

The normal to C_1 at the point P meets C_2 at the point Q.

Find the exact coordinates of Q.

(Solutions based entirely on graphical or numerical methods are not acceptable.)

$$\frac{dy}{dx} = 8x - 6 \quad (1 \text{ mark})$$

$$\text{gradient at } P = 8(\frac{1}{2}) - 6 = -2 \quad (1 \text{ mark})$$

$$\text{normal gradient at } P = -\frac{1}{m} = -\frac{1}{2} = \frac{1}{2} \quad (1 \text{ mark})$$

$$\text{equation of normal at } P \text{ is}$$

$$\frac{y-2}{x-\frac{1}{2}} = \frac{1}{2} \implies y = \frac{1}{2} \times + \frac{7}{4} \quad (1 \text{ mark})$$
when normal meets C_2 at Q_1

when normal meets
$$C_2$$
 at Q_1
 $\frac{1}{2}x + \ln(2x) = \frac{1}{2}x + \frac{7}{4}$
 $\ln(2x) = \frac{1}{4}$
 $= \frac{1}{2}(\frac{1}{2}e^{\frac{1}{4}}) + \frac{7}{4}$

$$y = \pm (\pm e^{\pm}) + \pm = \pm e^{\pm} + \pm = \pm e^{\pm} + = \pm e^{\pm} + \pm = e^$$