Question	Scheme		Marks	AOs
17 (a)	Way 1: Finds circle equation $(x \pm 2)^{2} + (y \mp 6)^{2} = (10 \pm (-2))^{2} + (11 \mp 6)^{2}$	Way 2: Finds distance between (-2, 6) and (10, 11)	M1	3.1a
	Checks whether (10, 1) satisfies their circle equation	Finds distance between $(-2, 6)$ and $(10, 1)$	M1	1.1b
	Obtains $(x+2)^{2} + (y-6)^{2} = 13^{2}$ and checks that $(10+2)^{2} + (1-6)^{2} = 13^{2} \text{ so}$ states that (10, 1) lies on C *	Concludes that as distance is the same $(10, 1)$ lies on the circle C *	A1*	2.1
			(3)	
(b)	Finds radius gradient $\frac{11-6}{10-(-2)}$ or $\frac{1-6}{10-(-2)}$ (m)		M1	3.1a
	Finds gradient perpendicular to their radius using $-\frac{1}{m}$		M1	1.1b
	Finds (equation and) y intercept of tangent (see note below)		M1	1.1b
	Obtains a correct value for y intercept of their tangent i.e. 35 or -23		A1	1.1b
	Way 1: Deduces gradient of second tangent	Way 2: Deduces midpoint of PQ from symmetry $(0, 6)$	M1	1.1b
	Finds (equation and) y intercept of second tangent	Uses this to find other intercept	M1	1.1b
	So obtains distance $PQ = 35 + 23 = 58*$		A1*	1.1b
			(7)	
	(10 m			

Question 17 continued

Notes:

M1:

(a) <u>Way 1</u> and <u>Way 2</u>:

Starts to use information in question to find equation of circle or radius of circle M1: Completes method for checking that (10, 1) lies on circle

Completely correct explanation with no errors concluding with statement that circle A1*: passes through (10, 1)

Calculates $\frac{11-6}{10-(-2)}$ or $\frac{1-6}{10-(-2)}$ (m) **M1**:

Finds $-\frac{1}{m}$ (correct answer is $-\frac{12}{5}$ or $\frac{12}{5}$). This is referred to as m' in the next note **M1**:

Attempts $y-11 = their\left(-\frac{12}{5}\right)(x-10)$ or $y-1 = their\left(\frac{12}{5}\right)(x-10)$ and puts x = 0, or **M1**: uses vectors to find intercept e.g. $\frac{y-11}{10} = -m'$

A1: One correct intercept 35 or - 23

Way 1:

Uses the negative of their previous tangent gradient or uses a correct $-\frac{12}{5}$ or $\frac{12}{5}$ **M1**: **M1**: Attempts the second tangent equation and puts x = 0 or uses vectors to find intercept

e.g. $\frac{11-y}{10} = m'$

Way 2:

M1: Finds midpoint of PQ from symmetry. (This is at (0, 6))

Uses this midpoint to find second intercept or to find difference between midpoint and M1: first intercept. e.g. 35 - 6 = 29 then 6 - 29 = -23 so second intercept is at (-23, 0)

Ways 1 and 2:

Obtain 58 correctly from a valid method A1*: