Question	Scheme	Marks	AOs
16(a)	$Sets 2xy + \frac{\pi x^2}{2} = 250$	B1	2.1
	Obtain $y = \frac{250 - \frac{\pi x^2}{2}}{2x}$ and substitute into P	M1	1.1b
	Use $P = 2x + 2y + \pi x$ with their y substituted	M1	2.1
	$P = 2x + \frac{250}{x} - \frac{\pi x^2}{2x} + \pi x = 2x + \frac{250}{x} + \frac{\pi x}{2} *$	A1*	1.1b
		(4)	
(b)	$x > 0 \text{ and } y > 0 \text{ (distance)} \Rightarrow \frac{250 - \frac{\pi x^2}{2}}{2x} > 0 \text{ or } 250 - \frac{\pi x^2}{2} > 0 \text{ o.e.}$	M1	2.4
	As x and y are distances they are positive so $0 < x < \sqrt{\frac{500}{\pi}}$ *	A1*	3.2a
		(2)	
(c)	Differentiates P with negative index correct in $\frac{dP}{dx}$; $x^{-1} \rightarrow x^{-2}$	M1	3.4
	$\frac{\mathrm{d}P}{\mathrm{d}x} = 2 - \frac{250}{x^2} + \frac{\pi}{2}$	A1	1.1b
	Sets $\frac{dP}{dx} = 0$ and proceeds to $x =$	M1	1.1b
	Substitutes their x into $P = 2x + \frac{250}{x} + \frac{\pi x}{2}$ to give perimeter = 59.8 M	A1	1.1b
		(4)	
(10 marks)			

Question 16 continued Notes: (a)

B1: Correct area equation M1: Rearranges their area equation to make y the subject of the formula and attempt to use with

an expression for PUse correct equation for perimeter with their y substituted

M1: Completely correct solution to obtain and state printed answer A1*:

(b) M1: A1*:

A1:

(c)

for y to give the printed answer correctly

M1: Attempt to differentiate P (deals with negative power of x correctly) Correct differentiation A1:

M1: Sets derived function equal to zero and obtains x =

The value of x may not be seen (it is 8.37 to 3sf or $\sqrt{\left(\frac{500}{4 \pm \pi}\right)}$) Need to see awrt 59.8 M with units included for the perimeter

States x > 0 and y > 0 and uses their expression from (a) to form inequality

Explains that x and y are positive because they are distances, and uses correct expression