| Question | Scheme | Marks | AOs | |----------|--|-------|------| | 14(a) | $\log_{10} P = mt + c$ | M1 | 1.1b | | | $\log_{10} P = \frac{1}{200}t + 5$ | A1 | 1.1b | | | | (2) | | | (b) | May 1: As $P = ab^t$ then $\log_{10} P = t \log_{10} b + \log_{10} a$ As $\log_{10} P = \frac{t}{200} + 5$ then $P = 10^{\left(\frac{t}{200} + 5\right)} = 10^5 10^{\left(\frac{t}{200}\right)}$ | M1 | 2.1 | | | $\log_{10} b = \frac{1}{200}$ or $\log_{10} a = 5$ $a = 10^5$ or $b = 10^{\left(\frac{1}{200}\right)}$ | M1 | 1.1b | | | So $a = 100\ 000$ or $b = 1.0116$ | A1 | 1.1b | | | Both $a = 100\ 000$ and $b = 1.0116$ (awrt 1.01) | A1 | 1.1b | | | | (4) | | | (c)(i) | The initial population | В1 | 3.4 | | (c)(ii) | The proportional increase of population each year | B1 | 3.4 | | | | (2) | | | (d)(i) | 300000 to nearest hundred thousand | В1 | 3.4 | | (d)(ii) | Uses $200000 = ab^t$ with their values of a and b or $\log_{10} 200000 = \frac{1}{200}t + 5$ and rearranges to give $t =$ | M1 | 3.4 | | | 60.2 years to 3sf | A1ft | 1.1b | | | 1.1 | (3) | | | (e) | Any two valid reasons- e.g. 100 years is a long time and population may be affected by wars and disease Inaccuracies in measuring gradient may result in widely different estimates Population growth may not be proportional to population size The model predicts unlimited growth | B2 | 3.5b | | | | (2) | | | Quest | Question 14 continued | | | |---------|--|--|--| | Notes: | | | | | (a) | | | | | M1: | Uses a linear equation to relate $\log P$ and t | | | | A1: | Correct use of gradient and intercept to give a correct line equation | | | | (b) | | | | | M1: | <u>Way 1</u> : Uses logs correctly to give log equation; <u>Way 2</u> : Uses powers correctly to "undo" | | | | | log equation and expresses as product of two powers | | | | M1: | <u>Way 1</u> : Identifies $\log b$ or $\log a$ or both; <u>Way 2</u> : Identifies a or b as powers of 10 | | | | A1: | Correct value for a or b | | | | A1: | Correct values for both | | | | (c)(i) | | | | | B1: | Accept equivalent answers e.g. The population at $t = 0$ | | | | | | | | | (c)(ii) | | | | | B1: | So accept rate at which the population is increasing each year or scale factor 1.01 or | | | | | increase of 1% per year | | | | (d)(i) | | | | | B1: | cao | | | | | | | | | (d)(ii) | | | | | M1: | As in the scheme | | | | A1ft: | On their values of a and b with correct log work | | | | (e) | | | | As given in the scheme – any two valid reasons B2: