Question	Scheme	Marks	AOs
1	Uses $y = mx + c$ with both (3, 1) and (4, -2) and attempt to find m or c	M1	1.11
<u>Way 1</u>	m = -3	A1	1.11
	c = 10 so y = -3x + 10 o.e.	A1	1.11
		(3)	
Or Way 2	Uses $\frac{y - y_1}{x - x_1} = \frac{y_2 - y_1}{x_2 - x_1}$ with both (3, 1) and (4, -2)	M1	1.11
	Gradient simplified to −3 (may be implied)	A1	1.11
	y = -3x + 10 o.e.	A1	1.1
		(3)	
Or Way 3	Uses $ax + by + k = 0$ and substitutes both $x = 3$ when $y = 1$ and $x = 4$ when $y = -2$ with attempt to solve to find a , b or k in terms of one of them	M1	1.1
	Obtains $a = 3b$, $k = -10b$ or $3k = -10a$	A1	1.1
	Obtains $a = 3$, $b = 1$, $k = -10$ Or writes $3x + y - 10 = 0$ o.e.	A1	1.1
		(3)	
		(7 n	narks
Notes:			
M1: Nee	ed correct use of the given coordinates		
A1: Nee	ed fractions simplified to -3 (in ways 1 and 2)		
A1: Nee	ed constants combined accurately		

N.B. Answer left in the form (y-1) = -3(x-3) or (y-(-2)) = -3(x-4) is a M1A1A0 as answers should be simplified by constants being collected

M1A1A0 as answers should be simplified by constants be Note that a correct answer implies all three marks in this question