Q	Marking instructions	AO	Mark	Typical solution
6(a)	States an appropriate even Pythagorean triple	2.2a	B1	a = 6 $b = 8$ $c = 10$
6(b)	Begins an appropriate method of proof assuming at least two sides are odd eg states 'assume a , b odd' or defines a , b (or c) algebraically with different unknowns	3.1a	B1	Assume a and b are odd so $a = 2m + 1$ and $b = 2n + 1$ $(2m + 1)^2 + (2n + 1)^2$ $= 4m^2 + 4m + 1 + 4n^2 + 4n + 1$ $= 2(2m^2 + 2m + 2n^2 + 2n + 1)$ which is even, so c^2 is even, so c is even. Therefore it is not possible for all three to be odd.
	Uses Pythagoras' theorem with at least two odd sides either in words or algebraically	1.1a	M1	
	Completes rigorous argument to prove the required result CSO	2.1	R1	
	Total		4	