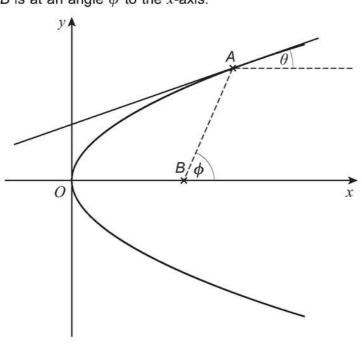

$$x = t^2$$
 and $y = 2t$ $-\sqrt{2} \le t \le \sqrt{2}$

is shown in Figure 1 below.

8 (a) Find a Cartesian equation of the curve in the form $y^2 = f(x)$

8 (b)

The point A lies on the curve where t = a


A parallel to the

[2 marks]

The tangent to the curve at A is at an angle θ to a line through A parallel to the x-axis.

The point B has coordinates (1, 0)

The line AB is at an angle ϕ to the x-axis.

8 (b) (i) By considering the gradient of the curve, show that

$$\tan \theta = \frac{1}{a}$$

[3 marks]

8 (b) (ii) Find $\tan \phi$ in terms of a.

[2 marks]

8 (b) (iii) Show that $\tan 2\theta = \tan \phi$

[3 marks]