

10

10 (a)

10 (b)

10 (c) (i)

Angle *AOB* is θ radians.

Given the area of the triangle OAC is half the area of the sector OAB, show that

 $\theta = \sin 2\theta$

Use a suitable change of sign to show that a solution to the equation

$$\sin 2\theta$$

 $\theta = \sin 2\theta$

The point C lies on OB such that AC is perpendicular to OB.

[2 marks]

The Newton-Raphson method is used to find an approximate solution to the equation 10 (c)

$$\theta = \sin 2\theta$$

Using $\theta_1 = \frac{\pi}{5}$ as a first approximation for θ apply the Newton-Raphson method twice

lies in the interval given by $\theta \in \left[\frac{\pi}{5}, \frac{2\pi}{5}\right]$

to find the value of θ_3

does not lead to a solution for θ .

Give your answer to three decimal places.

10 (c) (ii) Explain how a more accurate approximation for θ can be found using the

[3 marks]

Newton-Raphson method. [1 mark] **10** (c) (iii) Explain why using $\theta_1 = \frac{\pi}{6}$ as a first approximation in the Newton-Raphson method

[2 marks]