millions of tonnes per year, for six selected years. 1980 | 1985 | 1990 | 1995 | 2000 | 2005

The table below shows the annual global production of plastics, P, measured in

		1000	1000	1000	1000		2000
	P	75	94	120	156	206	260
It is though	nt that P c	an be mo	delled by	8			

 $P = A \times 10^{kt}$

Complete the table below.

9

9 (a)

9 (b) (i)

where
$$t$$
 is the number of years after 1980 and A and k are constants.

Show algebraically that the graph of $log_{10} P$ against t should be linear.

0 5 10 15 20 25 1.88 1.97 2.08 2.31

[1 mark]

[3 marks]

9 (b) (ii) Plot $\log_{10} P$ against t, and draw a line of best fit for the data.

[2 marks]

Hence, show that k is approximately 0.02 9 (c) (i)

[2 marks]

9 (c) (ii) Find the value of A.

9 (e)

[1 mark]

Using the model with k = 0.02 predict the number of tonnes of annual global 9 (d) production of plastics in 2030.

[2 marks]

[3 marks]

Give a reason why it may be inappropriate to use the model to make predictions 9 (f) about future annual global production of plastics. [1 mark]

Using the model with k = 0.02 predict the year in which P first exceeds 8000