of $y = \sin x$ is zero when $x = \frac{\pi}{2}$

Jodie is attempting to use differentiation from first principles to prove that the gradient

Jodie's teacher tells her that she has made mistakes starting in Step 4 of her working. Her working is shown below.

Step 1 Gradient of chord
$$AB = \frac{\sin(\frac{\pi}{2} + h) - \sin(\frac{\pi}{2})}{h}$$
Step 2 $= \frac{\sin(\frac{\pi}{2})\cos(h) + \cos(\frac{\pi}{2})\sin(h) - \sin(\frac{\pi}{2})}{h}$

Step 3
$$= \sin\left(\frac{\pi}{2}\right) \left(\frac{\cos\left(h\right) - 1}{h}\right) + \cos\left(\frac{\pi}{2}\right) \frac{\sin\left(h\right)}{h}$$

Step 4 For gradient of curve at A,

Step 2

let h = 0 then

$$\frac{\cos(h)-1}{h}=0 \text{ and } \frac{\sin(h)}{h}=0$$

Step 5 Hence the gradient of the curve at A is given by

$$\sin\left(\frac{\pi}{2}\right) \times 0 + \cos\left(\frac{\pi}{2}\right) \times 0 = 0$$

[4 marks]

Complete Steps 4 and 5 of Jodie's working below, to correct her proof.

Step 4 For gradient of curve at A,

Step 5 Hence the gradient of the curve at A is given by